在追求可持续的食品包装解决方案时,基于植物的可食用的LMS和涂料已成为有前途的替代方案,如评论论文所介绍的,标题为“基于植物的可食用的LMS和用于食品包装应用的涂料:最近的进步,应用,应用和未来趋势”这种综合分析阐明了最近利用自然资源来创建创新的包装材料来减少环境影响的大步通过利用植物来源的材料,例如多糖,蛋白质和脂质,这些可食用的LMS和涂料具有生物降解性,可再生性和堆肥性,从而解决了与传统石油基本包装相关的关注点。此外,他们延长易腐烂物品和减少食物浪费的保质期的能力强调了其在食品行业中的实用性。当我们深入研究未来的前景时,本文不仅确定了当前的挑战,而且还绘制了正在进行的研究和开发的课程,促进了范式的范围,以实现可持续的食品包装实践。通过合作和创新,确实可以实现生态友好的包装解决方案的旅程。
结肠药物的递送提供了许多药物机会,包括直接进入局部治疗靶标和药物生物利用度益处,这是由于结肠上皮减少的细胞色素P450酶和特定的流出式转运蛋白而产生的。目前用于开发结肠药物输送系统的工作流程涉及时必时间的,体外吞吐量的低吞吐量和体内筛查方法,这阻碍了合适的启用材料的识别。多糖是结肠靶向的有用材料,因为它们可以用作剂型涂层,这些剂量涂层被结肠微生物群选择性消化。但是,多糖是一个异质的分子家族,适合此目的。为了满足对结肠药物输送的高吞吐量材料选择工具的需求,我们杠杆机器学习(ML)和公共可访问的实验数据,以预测在模拟的人类,老鼠和狗尸体环境中从基于多糖的涂料中释放5-氨基化含量的药物。首次仅使用拉曼光谱来表征多糖以输入为ML特征。模型在新的多糖涂层中的8个看不见的药物释放曲线上进行了验证,这表明该方法的普遍性和可靠性。此外,模型分析促进了对影响聚结肠药物递送的化学特征的理解。这项工作代表了采用光谱数据来预测药物从药物制剂中释放药物的主要步骤,并标志着结肠药物递送领域的显着进步。,它为结肠靶向的配方涂料提供了有效,可持续和成功的开发和预先排序的强大工具,为未来的更有效和有针对性的药物输送策略铺平了道路。
Los Alamos国家实验室是一项平权行动/均等机会雇主,由Triad National Security,LLC经营,为美国能源部国家核安全管理局根据合同89233218CNA000001运营。通过批准本文,出版商认识到,美国政府保留了不判有限定的免版税许可,以出版或复制已发表的此捐款形式,或者允许其他人出于美国政府的目的。洛斯阿拉莫斯国家实验室要求出版商根据美国能源部主持的工作确定这篇文章。Los Alamos国家实验室强烈支持学术自由和研究人员发表权;但是,作为一个机构,实验室并未认可出版物的观点或保证其技术正确性。
如需了解更多信息,请联系: Petra Ammann 市场传播主管 欧瑞康表面解决方案部门 电话 +423 388 7500 petra.ammann@oerlikon.com http://www.oerlikon.com/ 关于欧瑞康表面解决方案部门 欧瑞康是全球领先的表面和增材制造解决方案与服务提供商。该部门提供市场领先的薄膜、热喷涂和增材制造技术、设备、部件和材料等广泛的产品组合。运输中的排放减少、工具和部件的使用寿命和性能最大化、效率提高和智能材料是其领先地位的标志。该部门数十年来一直开拓技术,通过遍布 37 个国家的 170 多个站点的全球网络为客户提供标准化和定制化解决方案。欧瑞康表面解决方案部门拥有欧瑞康巴尔查斯、欧瑞康美科、欧瑞康 AM、欧瑞康 Riri 和欧瑞康 Fineparts 等技术品牌,专注于改善和最大化性能、功能、设计、可靠性和可持续性的技术和服务,这些技术和服务为汽车、航空、工具和一般工业以及奢侈品、医疗、半导体、发电和石油天然气市场的客户带来了创新和改变游戏规则的优势。该部门隶属于上市公司欧瑞康集团 (SIX: OERL),总部位于瑞士,拥有 12,600 多名员工,2023 年的收入为 27 亿瑞士法郎。更多信息请访问:www.oerlikon.com/surface-solutions
带有2D材料的膜表面涂层已显示出用于水处理应用的防婚特性。但是,目前基于真空过滤的合成方法不容易缩放。本研究描述了一种可扩展的方法,可用于涂层膜,包括氧化石墨烯(GO),六边形硝酸氢硼(HBN),二硫化钼(MOS 2)和二硫化钨(WS 2)。使用含氧剂将含有每类2D薄片的异丙基醇溶液喷涂到商业聚偏氟化物(PVDF)上。纳米材料用聚多巴胺(PDA)作为一个可以轻松地集成到可扩展的滚动过程中的方法中的交联。使用扫描电子显微镜,原子力显微镜,接触角,拉伸强度测量和傅立叶转换红外光谱法评估了形态,表面粗糙度,疏水性,机械耐用性和化学组成的变化。在72 h的膜蒸馏(MD)实验中测试了2D纳米材料涂层的膜,并将其与原始的PVDF和PDA/PVDF膜进行了比较。使用高浓度的腐殖酸(150 ppm)和石蜡油(200 ppm)的盐排斥和MD性能稳定性评估,从而模拟了从油气萃取中模拟简单的有机废水。通量下降比以每小时渗透率损失百分比(%/h)来衡量,以便将来与不同的实验时间进行比较。所有膜的盐分排斥很高(> 99.9%)。原始的PVDF膜在10小时后因结垢而导致孔隙润湿失败,而PDA/PVDF膜的通量下降率最大(0.3%/小时)。涂有GO和HBN的膜的通量下降比较低(分别为0.0021±0.005和0.028±0.01%/h)。Go涂层的膜是唯一能够治疗含有表面活性剂和含有污垢的饲料的膜类型。改进的性能归因于表面粗糙度和疏水性的降低,这降低了污垢表面上的污垢吸附。这项工作显示了一种可延展的可扩展方法来克服MD中的犯规限制。
使用脉冲电沉积法制造纯镍和纳米复合镍-SI 3 N 4涂层。制造过程的初始条件是当电流密度为4 a.dm -2,占空比为50%,脉冲频率为10 Hz。原子力显微镜(AFM)用于执行评估每个涂层表面的任务。该实验的目标是通过增加每个参数,然后将结果与被认为是基线的条件进行比较,从而更好地了解情况。由于已经进行了观察结果,似乎平均正方形和根平均平均平均平均粗糙度高于其纯镍构成的纳米复合镍涂层的平均粗糙度。平均间距和波浪数量数据表明,在表面上存在偏爱的成核位点的任何位置都增加了。无论位置如何,情况就是这种情况。这些发现得到了以下事实的支持:两个指标都表现出向上的趋势。
総合研究栋b110“ 2D材料作为非常规环境的保护涂层” Hisato Yamaguchi,Los Alamos国家实验室国立ロス・アラモス国立研究所 国立ロス・アラモス国立研究所 国立ロス・アラモス国立研究所 国立ロス・アラモス国立研究所尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登山口尚登尚登山口尚登尚登山口尚登山口山口山口山口山口山口尚登山口研究员山口山口山口山口山口山口研究员研究员山口山口山口山口山口山口山口山口山口山口山口山口山口山口山口山口原子上的石墨烯层薄层,以通过直接阻断腐蚀反应物(例如氧气)(氧气,而与受保护的材料性能最少交替)来保护表面。原子薄度的高度抗腐蚀性能对于在非常规环境下的应用数量很有吸引力。一个例子是保护粒子加速器的电子源。高量子效率半导体光(由碱元素组成,因此需要10 -10 Torr/10 -8 PA的超高真空才能保持其性能。为了保护这种表面,不仅涂料需要表现出高气势屏障的性能,而且还需要在原子上稀薄,以使光电子有效地逃脱到真空中。另一个例子是对核应用的actinides的保护。系统通常无法在常规涂层的〜微米厚度下忍受杂质包含,因此涂料需要厚度〜Nanomer厚。在本演讲中,我将向上述两个应用程序介绍我们的进度。关于粒子加速器电子源的保护,我们证明了3个数量级增加了3个数量级的碱抗抗氧化物半导体光电座的主动压力增加,并在2019年赢得了R&D 100奖。我们最近开始保护肌动剂,并证明了针对氢腐蚀的寿命增强。
兴趣探索注释PMC 30硅胶涂料系统Vikram Sarabhai太空中心开发了许多专业涂料,以满足发射车和卫星的特定要求。这些涂料也可能找到各种工业应用。PMC 30是一种室温可固化的基于硅酮的涂料系统,其中包含微袋子和其他填充剂,可赋予系统低热扩散率。它们用于发射车辆和冷冻罐中的热保护系统。它们是通过在双速度混合器中制备的预加油器,以及在Sigma混合器中的填充剂和Premix的混合物进行处理。中心每年需要大约2吨PMC 30。典型属性 /特征:< / div>
“干涂层”的技术方法允许消除能源密集型干燥步骤,以节省大量能源和成本。“ F. Degen和O.Krätzig,“电池生产的未来:新型生产技术作为工程决策指南的广泛基准”,《工程管理交易》,doi:10.1109/tem.2022.3144882。