摘要 — 飞机驾驶舱内的通信目前基于有线或射频连接。例如,已经引入无线技术来支持平板电脑。然而,射频技术的使用仍然有限。例如,耳机的无线连接在舒适性和灵活性方面对飞行员来说是一个优势,但也存在一些问题,尤其是射频干扰和音频数据安全问题。基于可见光或红外线的光学无线通信为克服这些问题提供了有趣的可能性。事实上,由于光束被限制在环境中,这项技术可以抵御攻击风险,从而提高安全性。此外,射频免疫可确保没有干扰,从而为通信提供更多资源。本文首次在文献中采用模拟方法研究了飞机驾驶舱内飞行员耳机连接的光学无线信道,并根据给定链路可靠性可实现的最大数据速率确定了其性能。索引术语 — 光学无线通信;红外传输;信道建模。
飞行控制系统日益复杂和自动化,对联邦飞机认证和飞行员培训政策构成了挑战。尽管过去二十年来商业航空安全取得了显著改善,但飞行控制自动化和飞机复杂性被认为是造成多起重大航空事故的因素,包括 2018 年和 2019 年两起涉及新推出的波音 737 Max 变体的海外坠机事故。这些坠机事件引起了人们对联邦航空管理局 (FAA) 对运输类飞机型号认证和飞行员培训实践监督的关注,特别是因为它们涉及复杂的自动飞行控制系统。随着飞机系统在过去三十年中不断发展以纳入新技术,国会已授权 FAA 简化认证流程,主要动机是促进开发新的增强安全性技术。
在飞行过程中,飞行员必须严格监控他们的飞行仪表,因为这是更新他们情况意识的关键活动之一。监控对认知要求很高,但对于在参数出现偏差时及时干预是必要的。许多研究表明,很大一部分商业航空事故与机组人员对驾驶舱的监控不力有关。眼动追踪研究已经开发出许多指标来检查艺术观赏、体育、国际象棋、阅读、航空和太空等领域的视觉策略。在本文中,我们建议使用基本和高级眼部指标来研究新手和飞行员的视觉信息获取、凝视分散和凝视模式。该实验涉及一组 16 名经过认证的专业飞行员和一组 16 名新手,他们在飞行模拟器中执行手动着陆任务场景。两组以不同难度着陆三次(通过双任务范式进行操控)。与新手相比,专业飞行员的感知效率更高(停留次数更多且更短)、注意力分布更佳、视觉注意力处于环境模式、视觉扫描模式更复杂更精细。我们通过基于余弦 KNN(K 近邻)的机器学习使用转换矩阵对飞行员的资料(新手 - 专家)进行分类。几个眼部指标也对着陆难度敏感。我们的研究结果可以帮助评估机组人员的监控绩效、改进初始和复训并最终减少因人为错误导致的事故和意外,从而使航空领域受益。
摘要:随着科技的不断飞跃和创新的不断推进,民用飞机的系统日益精密复杂,座舱内飞行员需要处理的信息量也随之增加,认知负担也随之加重,对飞行安全构成极大威胁。为此,设计人员基于人机工程学,制定了重要性、使用频率、功能分组、操作顺序等座舱布局原则,可以有效减轻飞行员的认知负担。某机型座舱布局对四大设计原则的符合程度可以体现其人机工程学设计水平。本文依据上述四大座舱布局原则的概念,提出了座舱布局对四大设计原则符合性的评价方法。该方法以实际机型在正常飞行任务中使用的座舱系统控件操作顺序为评价数据源,采用加权累积法得到座舱布局总体评价结果。最后以A320系列和B737NG系列民航客机驾驶舱为例,阐述了民航客机驾驶舱布局的评估流程,并根据最终评估结果验证了所提评估方法的可行性和有效性。
摘要。疲劳的飞行员容易出现认知障碍,从而降低他们的表现和对高安全标准的遵守。鉴于当前航空业面临的挑战,我们报告了我们正在进行的关于重新评估机组人员人为因素研究的项目的早期阶段。我们的动机源于航空组织需要为运营航空环境开发决策支持系统,能够为组织的疲劳风险管理工作提供信息。为此,关键标准是需要尽可能减少干扰并为安全系统增加信息价值。摆脱合规性疲劳风险管理中的问题和临床研究的侵入性,我们报告了一种神经科学方法,能够产生可以轻松集成到运营层面决策支持系统中的标记。报告我们实时项目的初步阶段,我们评估了适合开发跟踪细微飞行员状态(例如困倦和微睡眠事件)的系统的工具。
摘要。提高飞行员的态势感知能力是下一代飞机驾驶舱设计的主要目标。飞行员的窗外视野是一个根本问题,由于恶劣天气、黑暗或飞机结构本身的原因,飞行员的视野经常会变差。解决这个问题的常用方法是通过机载传感器和包含地形和障碍物信息的数据库生成增强的周围环境模型。在直升机领域,环境的图像随后通过面板显示器或透明头戴式显示器呈现给飞行员。我们研究了第三种信息显示方法。这个概念——称为虚拟驾驶舱——应用了非透明头戴式显示器。利用这种虚拟现实显示器,可以结合现有的合成和增强视觉系统的优势,同时克服现有的局限性。除了对优缺点的理论讨论外,还展示了该概念在直升机海上作业中的两个实际实施示例。在基于游戏引擎 Unity 的模拟环境中进行了两项人为因素研究。它们证明了虚拟驾驶舱具有成为未来驾驶舱长期候选方案的普遍潜力。© 2019 光学仪器工程师协会 (SPIE) [DOI:10.1117/1.OE.58.5.051807]
执行数字飞行数据记录器 (DFDR) 定期强制读数的组织已制定程序,以确保正确解释数据帧布局文档中的所有信息,用于定期强制读取相关记录装置,并且仅对已转换为工程单位的数据进行任何评估。此外,组织发布的任何报告都应通过文件编号和发布状态引用执行读数的数据帧布局文档。
COCKPIT Length: 1,70m / 5'7'' x Beam: 2,40m / 7'10'' • Self-bailing cockpit • Sliding aft bench seat, 4 place (Upholstery depending on version) - 2 Cup holders - Storage locker beneath the seating • Folding side bench seat • Additional cockpit fittings (see optional extras) • Lockers in cockpit bottom: - 1 Large central lockable chest with gas piston assisted opening - 1 Compartment in central bench seat - 1 Compartment in optional bench seat (Option) • Lighting from 2 ceiling lights • Roto-moulded fuel tanks (2 x 300 L / 2 x 79 US Gal ) at the bottom of the cockpit compartment, in waterproof and ventilated compartment • 2 Fuel filler caps on port and starboard freeboards • Gangway door to starboard (folding swimming ladder not included, available as选项)•右舷浴缸•安全门•游泳平台下方的望远镜游泳梯子•驾驶舱淋浴
执行数字飞行数据记录器 (DFDR) 定期强制读数的组织已制定程序,以确保正确解释数据框布局文档中的所有信息,用于相关记录装置的定期强制读数,并且仅对已转换为工程单位的数据进行任何评估。此外,组织发布的任何报告都应通过文件编号和发布状态引用执行读数的数据框布局文档。
在交互式触觉系统中,“表面”既是触摸的支持,也是图像的支持。虽然触摸表面的厚度、形状和硬度已逐渐发生改变,但其交互方式仍然像第一批设备一样,仅限于用手指以简单的手势接触屏幕,假装操纵显示的内容。触觉,即使对于集成到航空或汽车等关键系统中的触觉设备,仍然基本上作为视觉的延伸,用于指向和控制。虽然感知现象学、生态感知和有形与具身交互的理论都承认身体、运动技能和与环境的交互在感知现象中的重要性,但继续将视觉视为触觉交互的首要感觉似乎有些简单化。