变异自动编码器(VAE)[19,41]是一个人口,深,潜伏的模型(DLVM),这是由于其简单而有效的数据用于建模数据分布。优化VAE目标函数比其他DLVM更易于管理。VAE的瓶颈维度是一个至关重要的设计选择,并且对模型的性能具有很强的冲突,例如使用VAE学到的代表来找到数据集的隐藏解释因素。但是,VAE的潜在维度的大小通常被视为通过反复试验和误差经验估计的高参数。为此,我们提出了一个统计公式,以发现建模数据集所需的潜在因素。在这项工作中,我们在潜在空间中使用层次先验,使用编码数据估算潜在轴的方差,该数据标识了相关的潜在维度。为此,我们用层次的先验代替了VAE客观功能中的固定先验,使剩余的配方保持不变。我们将所提出的方法称为变异自动编码器(ARD-VAE)1中的自动相关性检测。我们证明了ARD-VAE在多个基准数据集中找到相关的LATENT尺寸及其对不同评估的效果(例如FID得分和分离分析分析)的疗效。
稀疏的高斯过程。在稀疏的高斯过程近似过程中已经进行了一系列工作,可以追溯到Snelson和Ghahramani(2006),Qui〜nonero-Candela和Rasmussen(2005)等。这些稀疏方法中的大多数都依赖于一个汇总的一组,称为诱导点,主要是选择这些点的确切方式。在Titsias(2009)中首先考虑了诱导点的变异学习,并被证明会导致显着的性能提高。而不是在非变化稀疏模型中使用近似边缘的GP可能性,而是在确切的GP边际可能性上的下限被得出并用作训练目标。与我们工作相关的另一种方法是Hensman等人的随机变异方法。(2013),作者提出了一个稀疏模型,除了降低GP复杂性外,还可以在小型批次中训练,从而使(极其)大型数据集使用GP模型。
通过纳米和微技术(量子点和微流体)的融合,我们创建了一个能够对人类血清样本中的传染性病原体进行多重、高通量分析的诊断系统。作为概念验证,我们展示了能够检测全球最流行的血液传播传染病(即乙型肝炎、丙型肝炎和 HIV)血清生物标志物的能力,样本量少(<100 µ L),速度快(<1 小时),灵敏度比目前可用的 FDA 批准方法高 50 倍。我们进一步展示了同时检测血清中多种生物标志物的精确度,交叉反应性最小。该设备可以进一步发展成为便携式手持式即时诊断系统,这将代表发达国家和发展中国家在检测、监测、治疗和预防传染病传播方面的重大进步。
2。in No.901,根据FPA的第215(d)(5)条,委员会指示NERC向NEW或修改后的可靠性标准提交给注册IBR的新的或修改后的可靠性标准,除其他方面,以解决问题监控数据共享,绩效要求和事后绩效验证。5委员会指示NERC考虑IBR所有者的负担,以收集和提供由干扰监控设备收集的数据,同时确保批量功率系统运营商和计划者拥有所需的数据来准确进行干扰监控和分析。6委员会还指示NERC提交新的或修改后的可靠性标准,这些标准“要求发电机所有者与相关的计划协调员,传输计划者,可靠性协调员,传输操作员和平衡当局进行实际扰动后扰动率的速率平衡。” 7委员会指示NERC在2024年11月4日之前向委员会提交新的或修改的可靠性标准。8
基于基因组结构和复制策略的相似性,RNA病毒如今可分为“超类群”,通常涵盖动物病毒和植物病毒(Goldbach & Wellink,1988;Strauss & Strauss,1988)。这一概念也越来越多地体现在病毒分类学中;尤其是引入了分类单元“目”,将很可能拥有共同祖先的病毒科合并在一起(Mayo & Pringle,1998)。对于正链、有包膜的冠状病毒和动脉炎病毒(最近被统一归入巢病毒目,Cavanagh,1997),基于相似的多顺反子基因组结构、共同的转录和(后)翻译策略以及一系列同源复制酶结构域的保守性(den Boon et al.,1991),它们之间建立了密切的系统发育关系。因此,有可能勾勒出nidovirus生命周期的共同轮廓(图1)(详见Lai & Cavanagh,1997;de Vries et al.,1997;Snijder & Meulenberg,1998)。然而,在某些方面,这两个病毒家族彼此之间存在显著差异。例如,最大的冠状病毒基因组,鼠肝炎病毒(MHV),其基因组为31±5kb,约为最小动脉炎病毒基因组,即马动脉炎病毒(EAV)12±7kb RNA的两倍半。此外,这两个病毒家族的结构蛋白没有明显的相关性,导致病毒体的大小和结构存在重要差异(den Boon et al.,1991;Snijder & Spaan,1995;de Vries et al.,1997)。大多数主要的动物正链RNA病毒群体要么产生单个多聚蛋白,要么产生单独的非结构和结构前体多肽,这些多肽随后被病毒编码或宿主编码的蛋白酶裂解,产生功能性亚基(Dougherty & Semler, 1993)。相比之下,在基因组3′-近端区域编码的nido病毒结构蛋白,
该文件计划于 2025 年 1 月 28 日在《联邦公报》上公布,并可在 https://federalregister.gov/d/2025-01792 和 https://govinfo.gov 上查阅。
2019年以来的多种仪器您有可能提交三种不同仪器和 /或方法的参数结果。但是,一些参与者提交了三倍相同的结果,这表明这是单独的结果。情况并非如此,可能会影响统计分析。我们从统计分析中排除了第二和第三测试系统的结果。在将来的调查中不要多次提交相同的结果。
这项测试是开发的,其性能特征由ARUP实验室确定。尚未获得美国食品药品监督管理局的清理或批准。该测试是在CLIA认证的实验室进行的,旨在用于临床目的。
图 6 示例性注意力矩阵,可视化三位参与者在收敛时的注意力得分(来自随机选择的训练样本)(值越亮表示注意力得分越高)。解码器中的时间步长在 y 轴上表示,编码器的时间步长在 x 轴上表示。对角线结构表明注意力得分在时间域上是很好地对齐的,例如输出中的后续步骤关注输入中的后续步骤。该图还表明,填充输入 sEEG 序列(语音规划和理解)可能是不必要的,因为没有太多注意力放在第一个和最后一个输入步骤上。