一般效率. . . . . . . . . . . . . . . . . . . . 70 - 90 % 工作温度. . . . . . . . . –20 至 +75 °C 负载降额. . . . . . . . . . . . . . . . 2.5 % / °C 从 +55 °C 存储温度. . . . . . . . . . . . –40 至 +85 °C 湿度. . . . . . . . . . . . . . . . 高达 95 % RH,无冷凝冷却. . . . . . . . . . . . . . . . ...自然对流 温度系数.... 0.02 % / °C 典型值 安全 / 结构.... . . . . . . 符合 DIN / EN 60950-1: 2003 保护类别.... . . . . . . IP 20,其他或 NEMA 可根据要求 EMI.... . . . . . . . . . . . . . . 符合 EN 55022,A 类,可选 B 类 MTBF.... . . . . . . . . . . . . . . . 约 140,000 小时 @ 40°C 符合...符合 MIL - HDBK - 217 E(注意事项 1) 欧洲卡式磁带连接器 - 标准设计。。。。。H 15(详情见第 103 页) 标记。。。。。。。。。。。。。。。。。。。。。。。。。。CE
3 传热传质的基本原理 ......................................................................................69 3.1 简介 ...................................................................................................... 69 3.2 传输现象的基本关系 .............................................................................. 69 3.2.1 传输的基本定律 ............................................................................. 69 3.2.2 传热传质的机制 ............................................................................. 70 3.3 传导传热传质 ............................................................................................. 70 3.3.1 傅立叶定律和菲克定律 ............................................................................. 70 3.3.2 稳态传导传输中傅立叶定律和菲克定律的积分 ............................................................. 71 3.3.3 热导率、热扩散率和分子扩散率 ............................................................................. 73 3.3.4 稳态传导传热传质过程的示例 ............................................................................. 76 3.4 对流传热传质 ............................................................................................. 81 3.4.1 薄膜(或表面)传热传质系数................... 81 3.4.2 对流传热传质的经验相关性 ...................................................................................................... 84 3.4.3 稳态界面质量传递 ......................................................................................................
集体流由动量空间中最终粒子分布的傅里叶展开的系数定义,对核碰撞的早期阶段很敏感。具体来说,前三个系数分别称为定向流 ( v 1 )、椭圆流 ( v 2 ) 和三角流 ( v 3 )。定向流对介质的状态方程 (EoS) 敏感;椭圆流对介质的自由度、部分子或强子能级和平衡度敏感;三角流对初始几何涨落敏感。在 RHIC-STAR 核碰撞实验中已经实现了一套全面的测量 [ 1 – 9 ]。在高能碰撞(> 20 GeV)中观测到的 vn 的组成夸克数 (NCQ) 标度表明部分子集体已经建立 [ 1 – 3 , 8 , 10 ]。特别地,D 介子也遵循 NCQ 标度 [ 2 , 10 , 11 ],这表明粲夸克集体与 u 、 d 和 s 夸克处于同一水平;因此,产生的介质达到(接近)平衡。束流能量扫描 (BES) 计划的主要动机是探索 QCD 相图并寻找可能的相边界和临界点。STAR 实验中 BES 计划的第一阶段 (BES-I) 涵盖碰撞能量 √ s NN = 7.7–62.4 GeV。已经观察到许多有趣的现象;在这里,我们重点关注集体流 vn 测量。图 1 总结了 STAR BES-I 的定向、椭圆和三角流相关观测结果。中速附近净重子的 v 1 斜率与碰撞能量的关系被认为是一级相变的可能信号。v 1 斜率的非单调能量依赖性与相变有关,v 1 斜率的最小值称为“最软点坍缩”[12]。在实验中,随着中子
目的:深部脑刺激 (DBS) 是一种行之有效的帕金森病 (PD) 治疗方法,通常可增强运动功能。然而,DBS 后可能会出现一些不良副作用,从而降低患者的生活质量。因此,临床团队必须仔细选择要进行 DBS 的患者。在过去十年中,曾有人尝试将术前数据与 DBS 临床结果联系起来,其中大部分都集中在运动症状上。在本文中,我们提出了一种基于机器学习的方法,能够预测大量 PD 的 DBS 临床结果。方法:我们提出了一种多模式管道,称为 PassFlow,可预测 84 个临床术后临床评分。PassFlow 由一个用于压缩临床信息的人工神经网络、一种用于从 T1 成像中提取形态生物标志物的最先进的图像处理方法以及一个用于执行回归的 SVM 组成。我们在 196 名接受 DBS 的 PD 患者身上验证了 PassFlow。结果:PassFlow 的相关系数高达 0.71,能够显著预测 84 个评分中的 63 个,优于比较线性方法。还发现,利用这些术前信息预测的指标数量与可获得这些信息的患者数量相关,表明 PassFlow 方法仍在积极学习中。结论:我们提出了一种基于机器学习的新型流程,用于预测 PD 患者 DBS 术后的各种临床结果。PassFlow 考虑了来自不同数据模式的各种生物标志物,仅从术前数据中就显示出一些评分的高相关系数。这表明,DBS 的许多临床结果都可以预测,而与特定的模拟参数无关,因为 PassFlow 已在没有此类刺激相关信息的情况下得到验证。
摘要:新兴研究报告称,功能性大脑网络会随着年龄的增长而发生变化。图论用于了解与年龄相关的大脑行为和功能差异,并使用脑电图 (EEG) 检查区域之间的功能连接。正常衰老对工作记忆 (WM) 状态下的功能网络和区域间同步的影响尚不清楚。在本研究中,我们应用图论来研究衰老对静息状态下网络拓扑的影响以及在执行视觉 WM 任务期间对衰老 EEG 信号进行分类。我们记录了 20 名健康中年人和 20 名健康老年受试者睁眼、闭眼和执行视觉 WM 任务时的脑电图。EEG 信号用于构建功能网络;节点由 EEG 电极表示;边表示功能连接。计算了包括全局效率、局部效率、聚类系数、特征路径长度、节点强度、节点中介中心性和同配性的图论矩阵来分析网络。我们应用了 K 近邻 (KNN)、支持向量机 (SVM) 和随机森林 (RF) 三个分类器对两组进行分类。分析显示老年组的网络拓扑特征显著减少。在睁眼、闭眼和视觉 WM 任务状态下,老年组的局部效率、全局效率和聚类系数显著降低。KNN 在视觉 WM 任务中实现了 98.89% 的最高准确率,并且比其他分类器表现出更好的分类性能。我们对功能网络连接和拓扑特征的分析可以用作探索人类大脑正常与年龄相关的变化的适当技术。
元音编码了有关说话者声道长度(VTL)以及元音类型的信息。本文展示了如何根据元音逐帧估计 VTL,以便于跟踪说话者,并使自动语音识别(ASR)在多说话者环境中更加稳健。该算法基于一种新的 VTL 协变语音特征,该特征对大小信息进行线性编码。本文表明,与更传统的倒谱系数相比,这种新的语音特征更适合 VTL 估计。VTL 估计基于高斯混合模型,该模型是在已知身高但未知 VTL 的说话者的语音材料上训练的。该研究由奥地利科学基金 (FWF) (J2541-N15)、EOARD (FA8655-05-1-3043) 和 UK-MRC (G0500221) 资助。
方法:招募 21 名右利手受试者,要求他们在同一平面上以相同方向(同相,IP)和相反方向(反相,AP)完成单指和双指的圆周运动。记录每个任务的运动数据(包括半径和角速度)以及使用功能性近红外光谱 (fNIRS) 同步的血氧浓度数据,覆盖前额叶皮层、运动皮层和枕叶等六个脑区。使用一般线性模型定位激活的脑区,并使用与基线相比血氧浓度的变化来评估脑区激活程度。使用小世界特性、聚类系数和效率来测量运动过程中大脑活动中的信息交互。
ACF....................................................................................................................................................................................................................................8 ACF.gls....................................................................................................................................................................................................................................9 ACF.lme....................................................................................................................................................................................................................9 ACF.lme.................................................................................................................................................................................................................... . . . . . . . . . . . . . . . . . . . 10 苜蓿 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 allCoef . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .................................................................................................................................................................................................................................................................................................................................................................................................................. 13 anova.lme .................................................................................................................................................................................................................................................................................................................................................................................................................................................. 15 as.matrix.corStruct .................................................................................................................................................................................................................................................................................................................................................................................................................................................. 15 as.matrix.corStruct .................................................................................................................................................................................................................................................................................................................................................................................................................................. . 18 as.matrix.pdMat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 测定. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 表. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 平衡分组. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 bdf. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ................. ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..................................................................................................................................................................................................................................................32 coef.lmList.......................................................................................................................................................................................................................................................................................33 coef.modelStruct.......................................................................................................................................................................................................................................................................................................................35 coef.pdMat....................................................................................................................................................... ..................................................................................................................................................................................................................................................................................................................................................................................................................36 coef.reStruct ..................................................................................................................................................................................................................................................................................................................................................................................................................................37 coef.varFunc .................................................................................................................................................................................................................................................................................................................................................................................................................................................................................. . ... ....................................................................................................................42 比较预测........................................................................................................................................................................................................................................................................................... . . 43 corAR1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . ... ................. ... . . . . . . 58 corMatrix.corStruct . . . . . . . . . . . . . . . . 59 corMatrix.pdMat . . . . . . . . . . . . . . . . . . . . . 61 corMatrix.reStruct . . . . . . . . . . . . . . . . . ...
基于核粉的离子对撞机设施(NICA)正在俄罗斯杜巴纳联合核研究所(JINR)建设。nica将在质量中心系统中的√snn = 4至11 GEV的范围内的能量碰撞(198 Au + 198 Au,209 Bi + 209 Bi)在√snn = 4至11 GEV的范围内,以提供在高净 - 巴里密度区域研究此问题的机会[1]。NICA的多用途检测器(MPD)实验将测量对状态方程(EOS)敏感的各种突出的诊断探针和强相互作用的物质的转运性能[2,3]。中,最突出的是,相对于碰撞对称平面而言,生成的Hadron的方位角集体流[4]。可以通过傅立叶系数v n在粒子方位角分布的扩展中进行量化。
背景:非小细胞肺癌(NSCLC)是扩散到大脑的最常见肿瘤实体,多达50%的患者发展出脑转移(BMS)。在MRI上检测BMS是具有挑战性的,其固有的诊断风险固有的风险。目的:在临床常规MRI上训练和评估NSCLC中BMS的全自动检测和3D分割的深度学习模型(DLM)。研究类型:回顾性。人口:预处理MRI 315 BMS的98例NSCLC患者分为培训(66例患者,248 BMS)和独立测试(17例患者,67 BMS)和对照(15例患者,0 BMS)同伙。场强/序列:t 1-/t 2加权,T 1加权对比度增强(T 1 CE;梯度回波和自旋回波序列),以及来自各个供应商和研究中心的1.0、1.5和3.0 t的天赋。评估:使用5倍交叉验证对训练队列进行了3D卷积神经网络(DEEPMEDIC),并在独立的测试和控制集中进行了评估。通过神经外科医生和t 1 CE的放射科医生对BMS的三维体素分割,用作参考标准。统计检验:每次扫描的敏感性(回忆)和假阳性(FP)发现,骰子相似性系数(DSC)比较手动分割之间的空间重叠,Pearson的相关性(R)的相关性(R)以评估量化量级的量级测量和WIRCO之间的关系,并评估量级的量级量表,并进行了量级测量。 BMS。p值<0.05在统计学上被认为是显着的。与参考标准相比,自动化结果:在测试集中,DLM检测到67 BMS中的57个(平均体积:0.99 4.24 cm 3),导致灵敏度为85.1%,而每次扫描的FP发现为1.5。错过的BMS比检测到的BMS(0.96 2.4 cm 3)的体积明显小(0.05 0.04 cm 3)。