摘要。众所周知,液压泵通常是其中包括其设计的单元的资源限制组件,而液压泵的状况决定了整个单元的性能和效率。工作的目的是开发诊断工具的原型,该工具可在操作过程中监视液压泵的技术状况。对联邦科学农业工程中心VIM生产的工具进行了分析,以诊断农业机械液压泵的技术状况。研究的材料是用于诊断液压单元技术状况的工具的原型,该工具基于振幅相位特征的方法,用于快速评估操作过程中泵的技术状况。在我们的研究基础上,我们得出的结论是,在通过脉动系数诊断液压泵的过程中进一步开发了技术的原型,因此有必要通过安装连接压力传感器的诊断点来增加农业机械液压系统的可控性。也与液压单元的制造商一起,制定了名义,允许,极限状态的标准,其特征在于供应系数KQ和脉动系数。
“ +””。 <=> 4- 57 $。 13 <1:> 4- 6 8。 1 <1 = 1> 1@ 2a 21 4-, / 9。。0 12 2 1> 22 4- / / /。 4-,9。
带隙参考(BGR)是模拟,混合信号,射频和生物医学应用中的关键电路。它提供了与温度无关的电压/电流,以引用低液位调节器(LDO)或临界电路的偏置电压。其输出电压也应对过程电压和温度(PVT)角敏感得多(Wong等,2004)。同时,对于在电池电源上运行的生物医学设备的功率必须是超低功率;因此,电池寿命很大。低温漂移电路是可穿戴生物医学设备中的关键模拟块。例如,具有1 mV分辨率的ADC需要具有0.5 mV最差温度漂移的BGR电路(Nagulapalli等,2017)。 因此,这显示了高度准确的参考电路的必要性。例如,具有1 mV分辨率的ADC需要具有0.5 mV最差温度漂移的BGR电路(Nagulapalli等,2017)。因此,这显示了高度准确的参考电路的必要性。
电池浸没在搅拌恒温水浴中,在实验过程中,水浴温度以 5 ø 为间隔从 5 ø 变化到 30øC。氮气供应通过浸没在水浴中的玻璃烧结起泡器,以在进入电池之前使其充满水蒸气。使用放置在靠近电池中心的井中的热电偶传感器监测电池的温度。DMS 通过一个装有液态 DMS(纯度 >99%,Aldrich,威斯康星州密尔沃基)的小玻璃球进入室 1。因此,电池这一侧的浓度相对于纯 DMS 略微不饱和。对于甲烷运行,移除玻璃球,将纯气体(纯度 99.0%,Liquid Carbonic,伊利诺伊州芝加哥)引入鼓泡器代替氮气。在实验过程中,膜的高浓度侧和低浓度侧分别使用 10 cm3 min- • 和 20 cm3 min- • 的气体流速。
摘要高级钢的参数受到包括化学成分和生产技术在内的因素组合的影响。杂质含量也是高级钢质质量的关键决定因素。夹杂物也可能发挥重要作用,但要遵守其类型和形状。夹杂物可能通过抑制微裂缝的发展来增加钢的强度。分析的材料是中碳结构钢的一年级。该研究是在140吨电炉的工业工厂中产生的6次热量进行的。鉴于五种热处理选择,比较了实验变体。提出了结果,以说明旋转弯曲期间疲劳强度系数,杂质之间的直径和间距之间的相关性。确定了高级钢与杂质直径的疲劳强度与硬度与杂质之间的间距之间的关系。所提出的方程式有助于实践的现有知识基础,其杂质的影响以及各种直径的杂质和非金属包容性之间的间距对疲劳强度。
在本文中,我们研究了外延 Ge/Si 层中拉曼模式的应变 - 声子系数的温度依赖性。为此,我们首先从理论上描述 b ( T ) 如何与材料弹性常数和声子波数的温度依赖性相关联。随后,我们分析了双轴应变场与 T 的关系,明确证明 ε ( T ) 可以分解为两个独立的贡献:(a) 外延应变,由于 Si ─ Ge 晶格失配(在特定温度下)引起,(b) 热应变,由 Ge 外延层和相对较厚的 Si 衬底之间的热膨胀系数 (CTE) 差异引起。最后,我们使用这些结果直接提取 150 – 450 K 范围内 Ge/Si 样品中的 b ( T ),通过比较 T 相关的 μ -Raman 测量与 T 相关的高分辨率 X 射线衍射实验 (HR-XRD),
合作。咨询小组每个都关注一个技术领域,定期开会审查计划的主要部分,分配相对优先级,并确定需要进一步关注的具体关键问题。对于选定的特定主题,咨询小组会赞助子小组,这些小组会对用户需求、当前知识状态和现有数据资源进行详细研究,并以此为基础推荐一项或多项数据汇编活动。本次大会
从 X 射线衍射实验中观察到,基材上固化的聚酰亚胺薄膜的取向使得酰亚胺链优先沿薄膜的平面方向排列。对于具有刚性棒状聚酰亚胺的薄膜,薄膜取向尤其突出,并且随着薄膜厚度的增加而显着降低。涂层厚度对聚酰亚胺薄膜取向和有序性的影响在纯均苯四甲酸二酐-对苯二胺 (PMDA-PDA) 薄膜中最为明显,在含有 50% 均苯四甲酸二酐-4,4'-二苯氧基二苯胺 (PMDA-ODA) 和 50% PMDA-PDA 的薄膜中略小,而在含有 100% PMDA-ODA 的薄膜中相对不明显。根据傅里叶变换红外衰减全反射光谱实验的C=O和C-N拉伸吸收带,位于薄膜中心附近的酰亚胺分子表现出比靠近表面的酰亚胺分子更差的结构有序性。这揭示了为什么随着薄膜厚度的增加,平均薄膜取向会降低,相应的热膨胀系数会增大。