了解当前和未来的作物需求对于提高农业生产力和管理长期水资源在不断变化的气候下至关重要。这项研究旨在估计在不同的水管理实践和气候变化方案下,作物用水需求将如何变化。使用灌溉决策工具的现场实验是在2016年和2017年在埃塞俄比亚Lemo进行的。农作物和水管理数据是在白菜和胡萝卜生产上收集的。现场数据用于估计作物系数(KC),并将结果与模拟的KC与农业政策环境扩展器(APEX)模型进行了比较。在顶点中使用了预测的未来气候数据来评估气候变化对未来作物水需求和KC的影响。现场数据分析表明,平均而言,农民传统实践(FTP)治疗比润湿前探测器(WFD)处理更多的水。使用土壤水平衡法,卷心菜的初始,中和晚期两种处理的KC值的平均值分别为0.71、1.21和0.8,胡萝卜分别为0.69、1.27和0.86。顶端模拟的KC捕获了FAO KC模式,其测定系数(R-square)在0.5到0.74之间。最高模拟和土壤水平估计的KC还表明,卷心菜的R平方与R平方的关系很强,而胡萝卜的含量在0.5到0.75之间,0.66和0.96。预计的气候变化分析表明,由于温度升高,预计将来的作物水需求将在未来增加。在气候变化方案下,与基线期相比,2025年,2055年和2085年的生长季节潜在蒸散量将在2025年,2055年和2085年增加2.5%,5.1和6.0%。模拟的KC表示2085年的变化系数较高,卷心菜为19%,胡萝卜为24%,而2025个时期模拟的KC表示变异系数最小(分别为16%和21%的卷心菜和胡萝卜)。该研究表明,当前使用可用水资源的灌溉计划应考虑到该地区较高的农作物水需求,以减少缺水的风险。
本研究重点关注从移植烧伤标本中进行医学图像检索时烧伤评估这一重大困难,特别是在资源受限的情况下,需要快速而准确的诊断。我们的解决方案将复杂的机器学习技术(即人工神经网络 (ANN))与图像修复系统中的对比度限制自适应直方图均衡化 (CLAHE) 算法相结合。与查询图像 (𝐾 query = 131 . 17 ) 相比,峰度值 (𝐾 CLAHE = 144 . 83 ) 的统计评估表明,CLAHE 图像中的分布具有更明显的尾部,从而增强了特定的图像特征。此外,CLAHE 图像中偏度的增加 (𝑆 CLAHE = 5 . 92 ) 表明与查询图像 (𝑆 query = 4 . 47 ) 相比,强度水平向更高强度的转变,进一步增强了可辨别的图像特征。通过这种结合,我们可以小心地保留图片边界,增强局部对比度,并最大限度地降低噪音,从而提高烧伤诊断的准确性。统计分析(例如峰度和偏度分析)验证了可见图片方面的改进,为基本纹理属性提供了重要的见解。我们使用 Bhattacharya 系数和独特的 bin 分析提高了图片检索效率,从而显著提高了匹配图像的检索分数。ANN 成功区分了需要移植的照片和不需要移植的照片,为急性烧伤提供了快速准确的诊断。这种综合技术大大提高了烧伤诊断水平,尤其是在紧急情况下,并有望改善医疗程序。我们的研究通过结合自动评估工具、强大的图像处理方法和机器学习,有助于提高困难医疗情况下的患者护理标准。
合作。咨询小组每个都关注一个技术领域,定期开会审查计划的主要部分,分配相对优先级,并确定需要进一步关注的具体关键问题。对于选定的特定主题,咨询小组会赞助子小组,这些小组会对用户需求、当前知识状态和现有数据资源进行详细研究,并以此为基础推荐一项或多项数据汇编活动。本次大会