自动文本识别是一个困难但重要的问题。它可以概括为:如何使计算机能够识别预定义字母表中的字母和数字,可能使用上下文信息。已经进行了各种尝试来解决这个问题,使用不同的特征和分类器选择。自动文本识别系统在准确性方面已经达到了人类的表现,并且在单一大小、单一字体、高质量、已知布局、已知背景、文本的情况下,速度超过了人类的表现。当上述一个或多个参数发生变化时,问题变得越来越困难。特别是,尽管近四十年来不断进行研究,但要达到人类在识别不同大小、不同风格、未知布局、未知背景的草书方面的表现,远远超出了当今算法的范围。在本报告中,我们详细分析了该问题,介绍了相关困难,并提出了一个解决自动文本识别问题的连贯框架。
人工智能:欧洲和罗马尼亚初创企业格局概述及其决定其成功的因素 Adina SĂNIUȚĂ 国立政治研究和公共管理大学 6-8 Povernei St., Sector 1, 012104 布加勒斯特,罗马尼亚 adina.saniuta@facultateademanagement.ro Sorana-Oana FILIP 罗马尼亚 sorana.filip@gmail.com 摘要 人工智能 (AI) 已融入我们生活的许多方面;在技术驱动的时代,企业使用人工智能来提高生产力,更好地了解消费者行为或通过机器人提供服务。基于 Filip (2021) 为论文进行的在线桌面和试点研究,该研究概述了欧洲和罗马尼亚初创企业的格局以及决定其成功的因素,如产品开发核心团队专业知识、核心团队承诺和业务战略。该研究旨在为进一步的论文创建一个框架,该论文将深入研究罗马尼亚的人工智能初创环境,因为经济期刊预测,鉴于罗马尼亚在这一领域的潜力以及 IT、技术和机器人领域的人才库,该市场将在不久的将来增长。关键词人工智能;初创企业;成功因素。介绍人工智能的一般性讨论人工智能 (AI) 有多种形式,从人脸检测和识别系统、搜索和推荐算法到数字助理、聊天机器人或社交媒体。它的复杂性和动态性很难用一个定义来概括 (Zbuchea、Vidu 和 Pinzaru,2019)。据统计,到 2024 年,全球人工智能市场规模预计将达到 5000 亿美元(Statista,2021a),预计人工智能软件市场收入将达到 3275 亿美元(Statista,2021b)。尽管人工智能在过去几年似乎发展迅速,普及度不断提高,但人工智能的历史可以追溯到 20 世纪 50 年代,当时这一概念诞生于科学家、数学家和哲学家的头脑中。艾伦·图灵是第一个对这一主题进行广泛研究的人,他在他的论文“计算机器和智能”中描述了人工智能一词,以及它的构建和测试(Anyoha,2017,第 1 页)。随着图灵测试的引入,他
Objective: We investigated brain cortical activity alterations, using a resting-state 256-channel high- density EEG (hd-EEG), in Alzheimer's (AD) and Parkinson's (PD) disease subjects with mild cognitive impairment (MCI) and correlations between quantitative spectral EEG parameters and the global cogni- tive status assessed by Montreal Cognitive Assessment (MoCA) 分数。方法:15个AD-MCI,11个PD-MCI和十个年龄匹配的健康控制(HC)进行了HD-EEG记录和神经心理学评估。脑脊液生物标志物分析以获得良好的特征组。EEG光谱特征,并研究了三组之间的差异以及与MOCA的相关性。结果:与对照组相比,AD-MCI和PD-MCI的α2/alpha1比的α2/alpha1比显着降低。在PD-MCI中观察到明显更高的theta和较低的β/theta比。MOCA评分与theta功率以及alpha2和beta功率以及alpha2/alpha1和alpha/theta比率直接相关。结论:这项研究强调了AD-MCI和PD-MCI患者的脑电图模式的显着差异,并指出了EEG参数在两种神经退行性疾病中可能的替代标志物的作用。明显的能力:除了完善的生物标志物外,我们的发现还可以支持神经退行性疾病中认知功能障碍的早期检测,并可以帮助监测疾病的进展和治疗反应。
摘要人类机器人合作(HRC)是实现大众个性化趋势所需的灵活自动化的关键,尤其是针对以人为中心的智能制造。尽管如此,现有的HRC系统遭受了不良的任务理解和符合人体工程学的不良派系的困扰,这阻碍了善解人意的团队合作技能。为了克服瓶颈,在这项研究中提出了一种混合现实(MR)和基于视觉推理的方法,为人类和机器人的操作提供了相互认知的任务分配。首先,提出了一种启用MR的相互认知HRC体系结构,其特征是监视数字双胞胎状态,推理合作策略并提供认知服务。其次,引入了一种视觉推理方法,从每个代理商的行动和环境变化的视觉看法中学习场景解释,以使满足人类操作需求的任务计划策略。最后,提出了一种安全,符合人体工程学和主动的机器人运动计划算法,以使机器人执行生成的共同工作策略,而人类操作员则在MR环境中获得了直观的任务操作指导,以实现同情的协作。通过演示衰老电池的拆卸任务,实验结果促进了积极主动的HRC的认知智能,以进行灵活的自动化。
事件摄像机最近显示出对实用视觉任务的有益,例如行动识别,这要归功于其高度分辨率,功率效率和引起的隐私问题。然而,当前的研究是由1)处理事件的困难,因为它们的持续时间长时间和动态动作具有复杂而模棱两可的语义; 2)事件框架表示带有固定堆栈的冗余作用。我们发现语言自然传达了丰富的语义信息,从而使其在降低疾病的不确定性方面非常出色。鉴于此,我们提出了一种新颖的方法,这是第一次解决基于事件的动作识别的跨模式概念化的识别。我们的确切确切带来了两项技术贡献。首先,我们提出了一个自适应细粒事件(AFE)表示,以自适应地过滤固定对象的重复事件,同时保留动态的对象。这巧妙地增强了精确的性能,而无需额外的计算成本。然后,我们提出了一个基于概念推理的不确定性估计模块,该模块模拟了识别过程以丰富语义代表。尤其是,概念推理基于动作语义建立时间关系,而不必要的估计可以解决基于分布表示的动作的语义不确定性。实验表明,在PAF,HADDV和我们的SEACT数据集上,我们的确切确切识别获得了94.83%(+2.23%),90.10%(+2.23%),90.10%(+37.47%)和67.24%。
由 Aaron Beck 提出的抑郁症认知理论得到广泛认可,该理论关注的是信息处理的偏见,强调情感和概念信息的消极方面。当前,人们试图发现这种认知和情感偏见的神经机制,并成功地确定了与情绪、注意力、沉思和抑制控制等几种偏见功能相关的各个大脑区域。然而,抑郁症患者如何发展出这种选择性消极处理的神经生物学机制仍存在疑问。本文介绍了一个以额叶边缘回路为中心的神经学框架,具体分析和综合了杏仁核、海马和内侧前额叶皮质内的活动和功能连接。首先,建立了正反馈回路如何在自动水平上导致抑郁症患者杏仁核持续过度活跃的可能解释。在此基础上,提出了两个假设:假设 1 围绕双向杏仁核海马投射,促进负面情绪和记忆的放大,同时阻碍海马吸引子网络中对立信息的检索。假设 2 强调腹内侧前额叶皮层通过与杏仁核和海马一起概括概念和情感信息,参与建立负面认知框架。本研究的主要目的是改进和补充现有的抑郁症病理模型,推动情感障碍神经科学当前理解的前沿,并最终有助于成功康复令人衰弱的情感障碍。
面部表达识别(FER)在计算机视觉应用中起着关键作用,包括视频不存在和人类计算机的相互作用。尽管FER的进展没有局部进步,但在处理在现实世界情景和数据集中遇到的低分辨率面部图像时,性能仍然会摇摆不定。一致性约束技术引起了人们的关注,以产生强大的卷积神经网络模型,从而通过增强来适应变化,但它们的功效在低分辨率FER的领域中得到了影响。这种性能下降可以归因于网络难以提取表达特征的增强样本。在本文中,我们确定了在考虑各种程度的分辨率时引起过度拟合问题的硬样品,并提出了新颖的硬样品感知一致性(HSAC)损失函数,其中包括组合注意力同意和标签分布学习。通过结合高分辨率和翻转低分辨率图像的激活图,将注意力图与适当的目标注意图与适当的目标注意图与适当的目标注意力图相结合的注意图与适当的目标注意力图的注意力图对齐。我们通过结合原始目标和高分辨率输入的预测来测量低分辨率面部图像的分类难度,并适应标签分布学习。我们的HSAC通过有效管理硬样品来赋予网络能够实现概括。各种FER数据集上的广泛实验证明了我们提出的方法比现有方法的多尺度低分辨率图像的优越性。此外,我们在原始RAF-DB数据集中达到了90.97%的最新性能。
有关此指南的内容关键数据保护概念生物识别识别我们如何证明我们遵守数据保护义务?我们如何合法处理生物特征数据?我们如何公平处理生物识别数据?准确性原理如何适用于生物识别数据?我们如何确保生物识别数据的处理是透明的?我们如何考虑对生物识别数据的权利请求?我们如何确保生物特征数据安全?
在这项工作中,他们提议审查老年认知可塑性的概念以及如何评估它,以及旨在促进它们的可能的干预措施。 div>通过动态评估或限制测试,由斯特恩和费尔斯坦提出。 div>最初是在儿童中实施的,随后有兴趣使用老年人。 div>认知可塑性是从经验中学习的能力。 div>要了解和衡量它,提出了动态评估,也称为对学习潜力的评估,它试图在其中确定某个基本能力和它在最佳环境中可以实现的潜力之间的差异。 div>有证据表明其在老年人中的应用。 div>有一些研究为他们的评估提供动态证据,而其他研究则进行了促进干预措施。 div>