一些哲学家寻找认知的标志:一组单独必要和共同充分的条件,用于识别所有认知实例。他们声称,标志对于回答有关认知的性质和分布的难题是必要的。在这里,我将论证,就目前情况而言,鉴于认知科学的现状,我们无法识别认知的标志。我将按如下方式进行。首先,我阐明一些促使寻找认知标志的因素,从而强调标志应该满足的要求。然后,我强调文献中关于标志的紧张关系。根据文献,尚不清楚搜索的目的是为了捕捉直观的认知概念还是真正的科学概念。然后,我依次考虑每个选项,声称无论哪种方式,都无法提供满足要求的标志。然后,我转移了一个可预见的反对意见,并强调了我观点的一些含义。
摘要 — 戏剧作品中的情感识别在基本的人机交互、情感计算和其他各种应用中起着关键作用。传统的单模态情感识别系统在捕捉人类情感的复杂性和细微差别方面往往面临挑战。为此,本研究调查了多种模态信息的整合,包括面部表情、语音和生理信号,以增强情感识别系统的稳健性和准确性。通过结合这些不同的信息来源,我们的目标是更全面地了解人类的情感,并提高情感识别模型的性能。该研究探索了各种方法,包括特征融合、注意力机制和跨模态迁移学习,以有效地结合和利用来自面部表情、语音和生理信号的信息。此外,我们解决了与领域适应和缺失数据处理相关的挑战,确保所提出的多模态方法在数据收集条件可能变化的现实场景中保持稳健。为了证实所提出方法的有效性,我们在为多模态情感识别精心制作的基准数据集上进行了实验。该数据集包括通过面部特征、录音和生理传感器捕捉到的各种情绪表达。评估指标经过精心选择,以评估模型在各种模式下捕捉人类情绪的复杂性和细化程度的能力。我们的研究通过深入了解面部表情、语音和生理信号之间的相互作用,加深了对多模态情绪识别的理解。所提出的框架不仅提高了情绪识别的准确性,而且还提供了对情绪状态的更全面理解,促进了人机交互和情感计算应用的进步。
现代生活的几乎所有方面都取决于太空技术。多亏了计算机视频的一般和深度学习技术的巨大进步,几十年来,全世界都见证了将深度学习的发展用于解决太空问题的问题,例如自动驾驶机器人,诸如示踪剂,类似昆虫的机器人,类似昆虫的机器人和SpaceCraft的健康监测。这些只是一些在深度学习的帮助下具有高级空间行业的重要例子。但是,深度学习模型的成功需要大量的培训数据才能具有不错的性能,而另一方面,用于培训深度学习模型的公开空间数据集非常有限。当前没有用于基于太空的对象检测或实例分割的公共数据集,部分原因是手动注释对象分割掩码非常耗时,因为它们需要像素级标签,更不用说从空间获取图像的挑战了。在本文中,我们的目标是通过释放数据集以进行航天器检测,实例分割和零件识别来填补这一差距。这项工作的主要贡献是使用太空设置和卫星的图像开发数据集,并具有丰富的注释,包括绑定的航天器和口罩的框架盒对物体部分的水平,这些盒子是通过自动程序和手动努力的混合而获得的。我们还提供了对象检测和Intance Sementation的最新方法作为数据集的基准。可以在https://github.com/yurushia1998/satellitedataset上找到下载建议数据集的链接。
Vidarbha青年福利协会,Amravati教授Ram Meghe技术与研究所教授(A+(A+(自治研究所),全印度技术教育委员会认可,新德里是由孟买的MAHARASHTRA State,Mumbai隶属于Sant Gadge Baba Amrravati University Maharashtra State,Amraba Amrravati University,Amrravati。Vidarbha青年福利协会,Amravati教授Ram Meghe技术与研究所教授(A+(A+(自治研究所),全印度技术教育委员会认可,新德里是由孟买的MAHARASHTRA State,Mumbai隶属于Sant Gadge Baba Amrravati University Maharashtra State,Amraba Amrravati University,Amrravati。
由 Aaron Beck 提出的抑郁症认知理论得到广泛认可,该理论关注的是信息处理的偏见,强调情感和概念信息的消极方面。当前,人们试图发现这种认知和情感偏见的神经机制,并成功地确定了与情绪、注意力、沉思和抑制控制等几种偏见功能相关的各个大脑区域。然而,抑郁症患者如何发展出这种选择性消极处理的神经生物学机制仍存在疑问。本文介绍了一个以额叶边缘回路为中心的神经学框架,具体分析和综合了杏仁核、海马和内侧前额叶皮质内的活动和功能连接。首先,建立了正反馈回路如何在自动水平上导致抑郁症患者杏仁核持续过度活跃的可能解释。在此基础上,提出了两个假设:假设 1 围绕双向杏仁核海马投射,促进负面情绪和记忆的放大,同时阻碍海马吸引子网络中对立信息的检索。假设 2 强调腹内侧前额叶皮层通过与杏仁核和海马一起概括概念和情感信息,参与建立负面认知框架。本研究的主要目的是改进和补充现有的抑郁症病理模型,推动情感障碍神经科学当前理解的前沿,并最终有助于成功康复令人衰弱的情感障碍。
摘要 研究:AI 社会认知评估与建模。评估 LLM 中的心智理论及其在心理学中的应用 NLP:LLM IFT、表征学习(对比和三重态损失)、语义聚类、总结 DL:Transformers、MoE、EncDec、RNNs、DPO、LoRA 工具:Python、Pytorch、Deepspeed、AWS Sagemaker、hydra、SQL 管理:建立 ML 团队、职能、策略和 OKR、招聘和指导科学家和实习生以及建立数据和注释合作伙伴关系。
文章引用:Zhabotynska, SA (2024)。读者对政治新闻叙事的接受:多模态性和互文性。认知、交流、话语,29,86-103。doi.org.10.26565/2218-2926-2024-29-06 摘要 战略叙事理论(Miskimmon 等人,2013 年;2017 年等)是在国际关系领域发展起来的,它将战略叙事视为政治行为者建构国际政治共同意义的一种手段,并塑造国内和国际行为者的看法、信念和行为。该理论的作者认为,对战略叙事运作的解释需要研究其形成、投射和接受。这种解释将各个学术领域聚集在一起,旨在寻找缺乏的方法论,以展示战略叙事的形成、投射和接收方面如何像三联画一样协同工作。本文从认知语言学的角度探讨了这个问题,认知语言学研究口头传递信息的概念基础。本文提出并测试了一个新颖的方法论框架,该框架假定以口头和视觉呈现的信息的认知本体论,作为追踪三个叙事方面同时动态的规律的可行基础。本文重点关注媒体新闻文本中所呈现的投射/接收叙事方面以及读者对此的反应——这是与互文性语言领域相关的问题。从方法论和主题上看,本文延续了先前的研究(Zhabotynska & Velivchenko,2019 年;Zhabotynska & Ryzhova,2022 年;Chaban 等人,2023 年;Chaban 等人,2024 年等),研究新闻媒体文本中的战略叙事的形成/投射方面。
学习多个参与者之间的时空关系对于群体活动识别至关重要。不同的群体活动通常会展示视频中参与者之间的多样化互动。因此,从时空参与者演化的单一视角来建模复杂的群体活动往往很困难。为了解决这个问题,我们提出了一个独特的双路径参与者交互 (Dual-AI) 框架,它以两种互补的顺序灵活地排列空间和时间变换器,通过整合不同时空路径的优点来增强参与者关系。此外,我们在 Dual-AI 的两个交互路径之间引入了一种新颖的多尺度参与者对比损失 (MAC-Loss)。通过帧和视频级别的自监督参与者一致性,MAC-Loss 可以有效区分单个参与者表示,以减少不同参与者之间的动作混淆。因此,我们的 Dual-AI 可以通过融合不同参与者的这些判别特征来增强群体活动识别。为了评估所提出的方法,我们在广泛使用的基准上进行了大量实验,包括排球 [ 21 ]、集体活动 [ 11 ] 和 NBA 数据集 [ 49 ]。所提出的 Dual-AI 在所有这些数据集上都实现了最佳性能。值得注意的是,所提出的 Dual-AI 使用 50% 的训练数据,其性能优于许多近期使用 100% 训练数据的方法。这证实了 Dual-AI 在群体活动识别方面的泛化能力,即使在有限监督的具有挑战性的场景下也是如此。
在过去的几十年中,描述化学结构的出版物数量稳步增加。然而,目前大多数已发表的化学信息在公共数据库中都无法以机器可读的形式获得。以更少的人工干预方式实现信息提取过程的自动化仍然是一个挑战——尤其是化学结构描述的挖掘。作为一个利用深度学习、计算机视觉和自然语言处理方面的最新进展的开源平台,DECIMER.ai(化学图像识别深度学习)致力于自动分割、分类和翻译印刷文献中的化学结构描述。分割和分类工具是同类中唯一公开可用的软件包,光学化学结构识别 (OCSR) 核心应用程序在所有基准数据集上都表现出色。这项工作中开发的源代码、训练模型和数据集均已在许可下发布。DECIMER Web 应用程序的一个实例可在 https://decimer.ai 获得。
人工智能:欧洲和罗马尼亚初创企业格局概述及其决定其成功的因素 Adina SĂNIUȚĂ 国立政治研究和公共管理大学 6-8 Povernei St., Sector 1, 012104 布加勒斯特,罗马尼亚 adina.saniuta@facultateademanagement.ro Sorana-Oana FILIP 罗马尼亚 sorana.filip@gmail.com 摘要 人工智能 (AI) 已融入我们生活的许多方面;在技术驱动的时代,企业使用人工智能来提高生产力,更好地了解消费者行为或通过机器人提供服务。基于 Filip (2021) 为论文进行的在线桌面和试点研究,该研究概述了欧洲和罗马尼亚初创企业的格局以及决定其成功的因素,如产品开发核心团队专业知识、核心团队承诺和业务战略。该研究旨在为进一步的论文创建一个框架,该论文将深入研究罗马尼亚的人工智能初创环境,因为经济期刊预测,鉴于罗马尼亚在这一领域的潜力以及 IT、技术和机器人领域的人才库,该市场将在不久的将来增长。关键词人工智能;初创企业;成功因素。介绍人工智能的一般性讨论人工智能 (AI) 有多种形式,从人脸检测和识别系统、搜索和推荐算法到数字助理、聊天机器人或社交媒体。它的复杂性和动态性很难用一个定义来概括 (Zbuchea、Vidu 和 Pinzaru,2019)。据统计,到 2024 年,全球人工智能市场规模预计将达到 5000 亿美元(Statista,2021a),预计人工智能软件市场收入将达到 3275 亿美元(Statista,2021b)。尽管人工智能在过去几年似乎发展迅速,普及度不断提高,但人工智能的历史可以追溯到 20 世纪 50 年代,当时这一概念诞生于科学家、数学家和哲学家的头脑中。艾伦·图灵是第一个对这一主题进行广泛研究的人,他在他的论文“计算机器和智能”中描述了人工智能一词,以及它的构建和测试(Anyoha,2017,第 1 页)。随着图灵测试的引入,他