场景文本图像不仅包含样式信息(字体,背景),还包含内容信息(字符,纹理)。不同的场景文本任务需要不同的信息,但是以前的表示学习方法 - 在所有任务中使用紧密耦合的功能,从而导致次优性能。我们提出了一个旨在解开这两种功能的分解表示学习框架(亲爱的),以改善适应性,以更好地解决各种下游任务(选择您真正需要的内容)。具体来说,我们合成具有相同样式但内容不同的图像对数据集。基于数据集,我们通过监督设计将两种类型的功能分解。很明显,我们将视觉表示形式直接分为样式和内容功能,内容特征是通过文本识别损失来监督的,而对齐损失使图像对中的样式特征保持一致。然后,样式功能用于通过图像解码器重新构造对应图像的提示,以指示对应方的内容。这样的操作根据其独特属性有效地将功能分解。据我们所知,这是场景文本领域中第一次删除文本图像的固有属性。 我们的方法在场景文本识别,转换和编辑中实现了最新的性能。据我们所知,这是场景文本领域中第一次删除文本图像的固有属性。我们的方法在场景文本识别,转换和编辑中实现了最新的性能。
面部表达识别(FER)在计算机视觉应用中起着关键作用,包括视频不存在和人类计算机的相互作用。尽管FER的进展没有局部进步,但在处理在现实世界情景和数据集中遇到的低分辨率面部图像时,性能仍然会摇摆不定。一致性约束技术引起了人们的关注,以产生强大的卷积神经网络模型,从而通过增强来适应变化,但它们的功效在低分辨率FER的领域中得到了影响。这种性能下降可以归因于网络难以提取表达特征的增强样本。在本文中,我们确定了在考虑各种程度的分辨率时引起过度拟合问题的硬样品,并提出了新颖的硬样品感知一致性(HSAC)损失函数,其中包括组合注意力同意和标签分布学习。通过结合高分辨率和翻转低分辨率图像的激活图,将注意力图与适当的目标注意图与适当的目标注意图与适当的目标注意力图相结合的注意图与适当的目标注意力图的注意力图对齐。我们通过结合原始目标和高分辨率输入的预测来测量低分辨率面部图像的分类难度,并适应标签分布学习。我们的HSAC通过有效管理硬样品来赋予网络能够实现概括。各种FER数据集上的广泛实验证明了我们提出的方法比现有方法的多尺度低分辨率图像的优越性。此外,我们在原始RAF-DB数据集中达到了90.97%的最新性能。
摘要 研究:AI 社会认知评估与建模。评估 LLM 中的心智理论及其在心理学中的应用 NLP:LLM IFT、表征学习(对比和三重态损失)、语义聚类、总结 DL:Transformers、MoE、EncDec、RNNs、DPO、LoRA 工具:Python、Pytorch、Deepspeed、AWS Sagemaker、hydra、SQL 管理:建立 ML 团队、职能、策略和 OKR、招聘和指导科学家和实习生以及建立数据和注释合作伙伴关系。
一些哲学家寻找认知的标志:一组单独必要和共同充分的条件,用于识别所有认知实例。他们声称,标志对于回答有关认知的性质和分布的难题是必要的。在这里,我将论证,就目前情况而言,鉴于认知科学的现状,我们无法识别认知的标志。我将按如下方式进行。首先,我阐明一些促使寻找认知标志的因素,从而强调标志应该满足的要求。然后,我强调文献中关于标志的紧张关系。根据文献,尚不清楚搜索的目的是为了捕捉直观的认知概念还是真正的科学概念。然后,我依次考虑每个选项,声称无论哪种方式,都无法提供满足要求的标志。然后,我转移了一个可预见的反对意见,并强调了我观点的一些含义。
摘要 - 手动跟踪教室出勤,这是一种备受推崇的传统方法,由于其对错误和效率低下的敏感性而提出了重大挑战。这些限制不仅消耗了宝贵的教师时间,而且损害了学术记录的准确性,从而影响了学生参与和表现的评估。回答这个问题,我们提出了一种使用基于机器学习的识别系统自动化课堂出勤的方法。这项研究旨在提高教育环境中出勤跟踪的准确性,效率和可靠性。我们研究的核心在于系统的设计和实施,阐明体系结构,数据流和集成到课堂环境中。我们的分析结果表明该系统可以跟踪出勤率的能力,同时提供有关其性能指标的准确信息。我们还深入研究了在课堂上实施此类技术的道德和实际考虑。通过使用基于机器学习的识别来自动化该过程,教育机构可以提高其运行效率,降低错误,并最终提供更有生产力的学习环境。我们的研究为教育研究和技术进步的未来途径打开了大门。关键字 - 自动出勤,出勤跟踪,面部识别,机器学习,课堂技术
文章引用:Zhabotynska, SA (2024)。读者对政治新闻叙事的接受:多模态性和互文性。认知、交流、话语,29,86-103。doi.org.10.26565/2218-2926-2024-29-06 摘要 战略叙事理论(Miskimmon 等人,2013 年;2017 年等)是在国际关系领域发展起来的,它将战略叙事视为政治行为者建构国际政治共同意义的一种手段,并塑造国内和国际行为者的看法、信念和行为。该理论的作者认为,对战略叙事运作的解释需要研究其形成、投射和接受。这种解释将各个学术领域聚集在一起,旨在寻找缺乏的方法论,以展示战略叙事的形成、投射和接收方面如何像三联画一样协同工作。本文从认知语言学的角度探讨了这个问题,认知语言学研究口头传递信息的概念基础。本文提出并测试了一个新颖的方法论框架,该框架假定以口头和视觉呈现的信息的认知本体论,作为追踪三个叙事方面同时动态的规律的可行基础。本文重点关注媒体新闻文本中所呈现的投射/接收叙事方面以及读者对此的反应——这是与互文性语言领域相关的问题。从方法论和主题上看,本文延续了先前的研究(Zhabotynska & Velivchenko,2019 年;Zhabotynska & Ryzhova,2022 年;Chaban 等人,2023 年;Chaban 等人,2024 年等),研究新闻媒体文本中的战略叙事的形成/投射方面。
今年4月,新泽西州教育部(NJDOE)邀请新泽西学区参加地球行动,以表彰2025年地球日。地球日是4月22日举行的年度活动,旨在展示对环境保护的支持。1970年4月22日首次举行,现在包括earthday.org全球协调的广泛活动,并在193多个国家 /地区与10亿人参与。2025年的官方主题是“我们的力量,我们的星球”。在承认2025年地球日,NJDOE邀请新泽西学区参加2025年4月的地球行动。这次庆祝活动挑战了新泽西学区,以计划和分享与五个主题周的活动,使学生,教育者和家庭成为其社区和地球的管家,以探索与气候相关的挑战和解决方案。五个主题周将是:
摘要目的是评估随机对照试验(RCT)对运动对所有人群和年龄段一般认知,记忆和执行功能的影响的系统评价。方法对RCT进行系统评价和元分析,评估运动对一般认知,记忆和执行功能的影响符合条件。进行了数据提取和偏差评分的风险。评估系统审查的测量工具(Amstar-2)用于评估偏见的风险。使用随机效应模型合并效应大小,并报告为标准化平均差异(SMD)。亚组分析,以实现参与者和干预特征。主要结果衡量一般认知,记忆和执行功能。数据来源Cinahl,Cochrane图书馆,Embase,Medline,通过Ovid,Emcare,Proquest Central,Proquest Nursing和Allied Health Source,Psycinfo,Scopus,Scopus,Sport Fissus和Web of Science。结果包括133次系统评价(2,724 RCT和258 279名参与者)。练习显着改善了一般认知(SMD = 0.42),内存(SMD = 0.26)和执行功能(SMD = 0.24)。与成年人和老年人相比,儿童和青少年的记忆和执行功能改善的运动更大。与其他人群相比,患有注意力/多动症的人的执行功能表现出更大的改善。效果通常更大。发现在排除评分为低质量低下的评论后,在统计学上仍然很重要。较短的干预措施(1-3个月)和Exergames(需要身体运动的视频游戏)对一般认知和记忆的影响最大。结论这些发现提供了有力的证据表明,锻炼,甚至光强度,使所有人群中的一般认知,记忆和执行功能都受益,从而加强了锻炼,作为优化认知健康的必不可少的,包括包容性的建议。试用注册号Prospero ID:CRD42023468991。
庞迪切里大学,印度帕德切里摘要:随着暴力犯罪者(包括儿童性犯罪者)的累犯率令人震惊,对维护脆弱环境的高级安全措施的需求越来越紧迫。学校,育儿中心和其他高风险地区特别容易受到潜在威胁的影响,因此必须实施积极的解决方案,以确保儿童和员工的安全和福祉。在很大程度上依赖安全人员手动监控的传统监视系统正越来越多地证明实时识别和应对威胁的不足。人类的监督通常受到诸如延迟反应和判断错误之类的局限性,留下了关键的安全差距。我们建议的工作提供了一种新颖的视频监视系统,该系统使用DeepFaceNet,这是一种高度优化和模块化的深度学习模型,旨在克服这些困难。由于该技术主要旨在处理监视摄像机的实时视频供稿,因此它可以识别和检测具有犯罪背景的人的面孔,尤其是那些被归类为高风险罪犯的人。通过利用最新的面部识别技术,我们建议的系统提供了强大而全面的威胁检测解决方案。随着公共安全的改善,它还可以抑制犯罪行为,这有助于避免这种事件。该系统通过强调高精度,实时处理和可靠性来解决并确保安全和监视领域的更安全环境。索引术语:面部识别,深度学习,深度,监视,安全性。