协作机器人技术是许多工业流程的非常有前途的技术,包括e.g。,制造业,物流,orconstruction.thisnewtechnologyarealsonolealsochanging of行业工人的环境。人类机器人相互作用(HRI)的研究对于增强操作员的工作条件和福祉以及生产绩效至关重要。在这方面,对认知人体工程学的特别重视的人为因素是实施安全,流利和有效的协作应用的基础。该研究主题在工业环境中以用户为中心和协作应用中的人为因素和认知人体工程学的研究进行了一系列贡献。在这里,我们从由协作机器人技术影响的三个关键领域的角度总结了这些研究:工人的安全,绩效和福祉。研究主题及时分析了工业HRI的不断变化的景观,因为我们站在一个新时代的工业自动化时代,这是由人类创造力和机器人效率的融合所定义的。除了反映该领域的最新研究外,还提供了有关协作机器人如何改变工业工作区的实用见解和前瞻性观点的贡献。在本研究主题中,每篇文章都涵盖了这种复杂关系的另一个方面,从将机器人纳入人类以人为中心的工作环境到设计和实施的复杂性的社会和心理影响。开发既有技术复杂又以人为本的解决方案需要一种整体方法,这对于理解HRI的复杂本质至关重要。
横截面年龄技能概况表明,如果不是更早,认知技能开始下降30岁。如果准确,这种年龄驱动的技能损失对人口迅速老龄化的社会的人力资本构成了重大威胁。我们会根据不同年龄的识字和算术技能的个人变化来估算实际年龄技能的概况。我们使用了成人能力评估(PIAAC-L)计划的独特德国纵向组成部分,该计划在3。5年后重新测试了大量代表性的成年人样本。我们的经验方法将年龄与队列效应分开,并纠正了从归还到平均值的测量误差。出现了两个主要结果。首先,平均技能在四十年代略有下降,然后稍微降低了识字能力,并且算成问题。第二,年龄较大的技能仅适用于低于平均水平的人的技能。使用高于平均水平的白领和受过高等教育的工人甚至超过了四十多岁的技能。妇女在老年时尤其是算术的技能损失更大。
1。简介教育中的人工智能(AIED)和辅助技术(AT)旨在开发适合学习者能力的用户特定解决方案。至关重要的方面是考虑到每个学习者的特殊性,以提出一个智能学习环境,利用学习者的互动行为。可以在AIED的背景下区分两种主要方法,这些方法是由计算机支持的学习(Kirschner和Gerjets,2006)和以学生为中心的学习(Calder,2015)。在计算机支持的学习中,学习内容的适应性很简单,因为它为实施适应算法提供了合适的背景(Spüler等,2016)。尽管有多种学习环境,例如Iweaver(Wolf,2003),Inspire(Papanikolaou等,2002)或Colcularis(Käser等,2013),试图实施学习过程适应的尝试表明结果不满意。在与学习者的互动中,这些系统本质上是基于所谓的教学剂(PA),这些教学剂(PA)以极大的自主权在学习者的互动中支持。关于学习者和PA之间可以进行的多相互作用,这些环境可以支持个性化和协作学习。这些环境中使用的共同体系结构基于四个模块(Moreno等,2001; Kim and Baylor,2006; Hooshyar等,2015),即域模块,学习者模块,教学模块和界面模块。在一般情况下,域模块代表特定领域的专家知识。(2)干扰?它不仅包含获得技能的专业知识,而且还提供了建立能力的内部代表。域模块必须能够在放置学习者的同一上下文中生成解决方案。这允许系统确定学习者和导师行动中的差异和对应关系。学习者模块提供了有关问题的学习者知识测量。这是专业知识,知识,认知概况和学习者历史的元组。教学模块允许定义调解以帮助学习者学习过程。它必须考虑每个教育,教学和心理原则。该模块的主要目的是回答三个问题(1)为什么要干扰?和(3)如何干预?交互模块是系统内部表示和学习者接口连接的负责。该模块与教育系统和学习者的评估技能永久合作。另一方面,它决定了系统用于传输信息的最终形式。
Andrea Vergallo,Pablo Lemercier,Enrica Cavedo,Simone Lista,Eugeen Vanmechelen等。等离子体ββ-SECRET1 1。 。 。 。 。 。10.1002/alz。
全天摄入碳水化合物。必须考虑并衡量我这么年轻的我吃的东西很难。”值得庆幸的是,在过去的50年中,情况发生了巨大变化,尤其是在过去的12个月中,随着欢乐的开始使用胰岛素泵这是一种小型电子设备,可释放您身体需求的常规胰岛素,因此她不再需要每天注射。Joy现在还戴上Dexcom - 放在手臂上的自动血糖监测仪,并连接到手机上的应用程序,该应用程序记录了所有健康数据。乔伊说:“技术的最新进展一直在改变我的生活。我希望其他人知道,如果您接受1型糖尿病诊断,您仍然可以做任何事情!只要注意,请务必携带准备,以防万一,以防您获得所有可用的支持,并在您的糖尿病诊所聆听您的专业护士,营养师和顾问。我一直是我的宝贵建议来源。我喜欢摄影,跋涉穿过丛林,爬山,去过像婆罗洲和爪哇这样的地方,被野生大象指控,并在活火山的顶部打破了我的腿。我经历了很多冒险 - 我的糖尿病从未阻止我!”糖尿病专家护士安娜·玛丽·杰森(Anna-Marie Jesson)说:“我们的目标是让患者拥有长期,健康且充实的生活,并患有糖尿病,而没有糖尿病控制自己的生活。1型糖尿病依赖于每周7天24小时的胰岛素注射或输液,而仅在1922年才发现胰岛素 - 因此,Joy一直使用胰岛素一半的时间!她看到了许多积极的变化,我们期待着未来50年的更多发展。”
注意:1。使用9.1 25的转化系数,根据60千克加权人类的表面积,将小鼠研究中使用的剂量缓解。小鼠的每日剂量为3.79 g/kg,衍生自9.1的配方量乘以每60千克25 g。每个啮齿动物的喂养体积为每公斤体重20毫升。2。粉末,酸奶和牛奶混合物是根据既定的食物标准制备的。组合(Th+WP)引入混合物中,然后在指定比例中添加蒸馏水。3.我们测试了三个浓度的组合(TH + WP)(85 + 200 mg/ml,170 + 200 mg/ml,170 + 400 mg/ml)。在这三组之间没有观察到没有显着差异,因此我们选择了最低
。但是,裁定设备操作的物理和化学裁定仍未完全揭示。在这项工作中,目的是阐明设备观察到的灵敏度的性质。朝着这个目标,一个物理化学模型,再加上RGO-EGT的实验表征,可以定量地将栅极电极处的生物认知事件与RGO-EGT的电子特性相关联。显示出在栅极电极处发生的生物识别的平衡,以确定RGO通道的表观电荷中性点(CNP)。RGO-EGT实验传递特性的多参数分析表明,识别事件调节CNP电压,过量的载体密度n n和RGO的量子电容。该分析还解释了为什么孔和电子载体迁移率,界面电容,转移曲线的曲率和跨导性对目标浓度不敏感。对生物识别事件晶体管转导的机制的理解是解释RGO-EGT免疫传感器响应的关键,并指导新颖和更敏感的设备的设计。
prader-Willi综合征(PWS)是一种罕见的遗传状况,具有多方面的身体,行为和认知困难,其特征在于女性噬菌体和低执行功能。寻求食物的行为可能会受到荷尔蒙,认知和心理因素的调节,并被认为部分是由功能性脑异常介导的。Here, we used an experimental protocol integrating eyes opens resting state magnetoencephalography (MEG) - a high-resolution neurophysiological imaging technique - and neuropsychological profiling to understand the relationship between executive functioning, and intrinsic brain activity & functional connectivity in a prospective, cross-sectional cohort with PWS, and a sex-, age- and BMI-matched control group.我们观察到PWS中的执行功能较低,以及跨大脑同步的多个通道的功能障碍 - 换句话说,跨多个频段,介导了大脑网络内部和大脑网络之间的通信 - 视觉,注意力和默认模式网络中。此外,我们发现了PWS患者脑网络拓扑结构的“脑范围”变化,功能网络的“枢纽”增加,但中心性降低。然而,尽管存在中等效应大小(关联程度),但与神经心理学结果相关后,这些措施与神经心理学结局相关后都没有幸存下来的多重比较校正。这是第一项结合神经心理学和神经生理成像的研究,表明PWS中多个脑网络中的功能同步失调。
摘要信息和无线通信技术的快速发展,以及最终用户数量的大幅度增加使无线电频谱比以往任何时候都更加拥挤。此外,随着电磁环境正在发展并变得越来越复杂,提供稳定且可靠的服务是具有挑战性的。因此,迫切需要更可靠和智能的通信系统,以提高频谱效率和服务质量以提供网络资源的敏捷管理,从而更好地满足未来无线用户的需求。特别是自动调制识别(AMR)在大多数智能通信系统中起着至关重要的作用,尤其是随着软件定义无线电(SDR)的出现。AMR是在认知无线电(CR)中执行频谱传感的一项必不可少的任务。多亏了深度学习(DL)应用中的显着进步,已经提供了新的和强大的工具,可以解决该领域的问题。因此,今天,将DL模型整合到AMR中已引起了许多研究人员的关注。这项工作旨在提供针对单输入单输出(SISO)和多输入多输出(MIMO)系统的最新机器学习(ML)AMR方法的全面最新审查。此外,将确定每个模型的体系结构,并在规范和性能方面进行详细的比较。最后,提供了开放问题,挑战和潜在的研究方向的概述以及讨论和结论。