摘要 在当今世界,多语言已成为常态,单语者是少数,学术研究一直未能适应这一现实。这一现象凸显了人类大脑掌握多种语言的能力,无论是母语 (L1)、第二语言 (L2) 还是第三语言 (L3),这要求重新评估传统范式。本研究旨在挑战认知语言学的传统方法,特别是与语言习得、语言选择和潜在的大脑过程相关的方法。研究问题包括:个人如何在不同的认知和社会背景下在多种语言之间导航,这对我们理解人类的认知能力有何影响?所采用的方法结合了使用脑成像、心理语言学测试和多语言使用者的社会语言学调查的实验分析。研究结果表明,双语和多语不仅可以提高认知灵活性,还可以提高多元文化环境中的解决问题的能力和适应能力。总之,本研究表明,多语言能力不仅仅是多种语言系统的习得,而是一种影响认知、社交互动和大脑结构的复杂现象。通过重新定义我们对认知和语言过程的理解,本研究提出了在全球化背景下研究语言的新范式。
文章引用:Zhabotynska, SA (2024)。读者对政治新闻叙事的接受:多模态性和互文性。认知、交流、话语,29,86-103。doi.org.10.26565/2218-2926-2024-29-06 摘要 战略叙事理论(Miskimmon 等人,2013 年;2017 年等)是在国际关系领域发展起来的,它将战略叙事视为政治行为者建构国际政治共同意义的一种手段,并塑造国内和国际行为者的看法、信念和行为。该理论的作者认为,对战略叙事运作的解释需要研究其形成、投射和接受。这种解释将各个学术领域聚集在一起,旨在寻找缺乏的方法论,以展示战略叙事的形成、投射和接收方面如何像三联画一样协同工作。本文从认知语言学的角度探讨了这个问题,认知语言学研究口头传递信息的概念基础。本文提出并测试了一个新颖的方法论框架,该框架假定以口头和视觉呈现的信息的认知本体论,作为追踪三个叙事方面同时动态的规律的可行基础。本文重点关注媒体新闻文本中所呈现的投射/接收叙事方面以及读者对此的反应——这是与互文性语言领域相关的问题。从方法论和主题上看,本文延续了先前的研究(Zhabotynska & Velivchenko,2019 年;Zhabotynska & Ryzhova,2022 年;Chaban 等人,2023 年;Chaban 等人,2024 年等),研究新闻媒体文本中的战略叙事的形成/投射方面。
神经结构表示是脑图或模型样结构,在结构上类似于它们所代表的内容。这些表示绝对是“认知神经科学革命”的核心,因为它们是与革命者的机械承诺兼容的唯一类型。至关重要的是,这些同样的承诺必须在神经元活性的漩涡中观察到结构表示。在这里,我认为,无论观察的时空尺度如何,我们的神经元活性中都没有观察到结构表达。我的论点首先引入了“认知神经科学革命”(第1节),并勾勒出对结构表现形式的突出,广泛采用的说法(§2)。然后,我将咨询各种在各种时空尺度上描述我们的神经元活动的报告,认为它们都没有报告存在结构表示的存在(§3)。在对我的分析(第4节)中偏转了某些直觉异议之后,我将得出结论,在没有神经结构表达的情况下,代表性和机制不能融合在一起,因此“认知神经科学革命”被迫放弃其主要承诺之一(§5)。
在过去的几十年中,描述化学结构的出版物数量稳步增加。然而,目前大多数已发表的化学信息在公共数据库中都无法以机器可读的形式获得。以更少的人工干预方式实现信息提取过程的自动化仍然是一个挑战——尤其是化学结构描述的挖掘。作为一个利用深度学习、计算机视觉和自然语言处理方面的最新进展的开源平台,DECIMER.ai(化学图像识别深度学习)致力于自动分割、分类和翻译印刷文献中的化学结构描述。分割和分类工具是同类中唯一公开可用的软件包,光学化学结构识别 (OCSR) 核心应用程序在所有基准数据集上都表现出色。这项工作中开发的源代码、训练模型和数据集均已在许可下发布。DECIMER Web 应用程序的一个实例可在 https://decimer.ai 获得。
Objective: We investigated brain cortical activity alterations, using a resting-state 256-channel high- density EEG (hd-EEG), in Alzheimer's (AD) and Parkinson's (PD) disease subjects with mild cognitive impairment (MCI) and correlations between quantitative spectral EEG parameters and the global cogni- tive status assessed by Montreal Cognitive Assessment (MoCA) 分数。方法:15个AD-MCI,11个PD-MCI和十个年龄匹配的健康控制(HC)进行了HD-EEG记录和神经心理学评估。脑脊液生物标志物分析以获得良好的特征组。EEG光谱特征,并研究了三组之间的差异以及与MOCA的相关性。结果:与对照组相比,AD-MCI和PD-MCI的α2/alpha1比的α2/alpha1比显着降低。在PD-MCI中观察到明显更高的theta和较低的β/theta比。MOCA评分与theta功率以及alpha2和beta功率以及alpha2/alpha1和alpha/theta比率直接相关。结论:这项研究强调了AD-MCI和PD-MCI患者的脑电图模式的显着差异,并指出了EEG参数在两种神经退行性疾病中可能的替代标志物的作用。明显的能力:除了完善的生物标志物外,我们的发现还可以支持神经退行性疾病中认知功能障碍的早期检测,并可以帮助监测疾病的进展和治疗反应。
Vidarbha青年福利协会,Amravati教授Ram Meghe技术与研究所教授(A+(A+(自治研究所),全印度技术教育委员会认可,新德里是由孟买的MAHARASHTRA State,Mumbai隶属于Sant Gadge Baba Amrravati University Maharashtra State,Amraba Amrravati University,Amrravati。Vidarbha青年福利协会,Amravati教授Ram Meghe技术与研究所教授(A+(A+(自治研究所),全印度技术教育委员会认可,新德里是由孟买的MAHARASHTRA State,Mumbai隶属于Sant Gadge Baba Amrravati University Maharashtra State,Amraba Amrravati University,Amrravati。
学生的特征。但是,似乎没有研究将这些特征与学生在定量化学方面的成就相关。因此,这项研究研究了数学和教学效率的认知进入特征与学生在定量化学方面的成就相关的程度。该研究采用了描述性研究设计。简单的随机抽样用于在河流州选择3个地方政府区域(LGA),每所LGA的10所学校以及一个由每所学校的所有化学学生组成的科学课程。共有1652名学生参加了这项研究。数据收集工具包括:数学测试中的CEC,学生的TE等级和定量化学成就测试。使用多重回归分析数据。CEC在数学和TE中对学生在
自动文本识别是一个困难但重要的问题。它可以概括为:如何使计算机能够识别预定义字母表中的字母和数字,可能使用上下文信息。已经进行了各种尝试来解决这个问题,使用不同的特征和分类器选择。自动文本识别系统在准确性方面已经达到了人类的表现,并且在单一大小、单一字体、高质量、已知布局、已知背景、文本的情况下,速度超过了人类的表现。当上述一个或多个参数发生变化时,问题变得越来越困难。特别是,尽管近四十年来不断进行研究,但要达到人类在识别不同大小、不同风格、未知布局、未知背景的草书方面的表现,远远超出了当今算法的范围。在本报告中,我们详细分析了该问题,介绍了相关困难,并提出了一个解决自动文本识别问题的连贯框架。
