一些哲学家寻找认知的标志:一组单独必要和共同充分的条件,用于识别所有认知实例。他们声称,标志对于回答有关认知的性质和分布的难题是必要的。在这里,我将论证,就目前情况而言,鉴于认知科学的现状,我们无法识别认知的标志。我将按如下方式进行。首先,我阐明一些促使寻找认知标志的因素,从而强调标志应该满足的要求。然后,我强调文献中关于标志的紧张关系。根据文献,尚不清楚搜索的目的是为了捕捉直观的认知概念还是真正的科学概念。然后,我依次考虑每个选项,声称无论哪种方式,都无法提供满足要求的标志。然后,我转移了一个可预见的反对意见,并强调了我观点的一些含义。
4 md.devendran@gmail.com摘要:鸟类鉴定在生物多样性保护和生态学研究中起着至关重要的作用,为栖息地健康和物种分布提供了见解。识别鸟类物种的传统方法是时间密集型,容易出现人为错误,因此需要自动解决方案。这个项目是使用深度学习的鸟类识别,提出了一个先进的系统,以利用深度学习的力量准确地从图像中识别鸟类。该系统利用卷积神经网络(CNN),以其在图像分类任务方面的熟练程度而闻名。一个包含多种鸟类图像的数据集进行了预处理并增强,以增强模型的鲁棒性和泛化。模型架构旨在提取复杂的特征,即使在诸如不同的照明条件,遮挡或类似物种的外观等挑战性的情况下,也可以准确识别。使用准确性,精度,召回和F1得分等指标评估模型的性能,以确保全面验证。结果表明,对传统机器学习方法的准确性改善了,这表明了物种识别中深度学习的潜力。该项目对野生动植物监测,生态研究和教育工具的应用有望,从而促进了意识和保护工作。未来的工作可能包括将系统集成到移动应用中,或将其部署在现场条件下的实时鸟类识别。
摘要人类机器人合作(HRC)是实现大众个性化趋势所需的灵活自动化的关键,尤其是针对以人为中心的智能制造。尽管如此,现有的HRC系统遭受了不良的任务理解和符合人体工程学的不良派系的困扰,这阻碍了善解人意的团队合作技能。为了克服瓶颈,在这项研究中提出了一种混合现实(MR)和基于视觉推理的方法,为人类和机器人的操作提供了相互认知的任务分配。首先,提出了一种启用MR的相互认知HRC体系结构,其特征是监视数字双胞胎状态,推理合作策略并提供认知服务。其次,引入了一种视觉推理方法,从每个代理商的行动和环境变化的视觉看法中学习场景解释,以使满足人类操作需求的任务计划策略。最后,提出了一种安全,符合人体工程学和主动的机器人运动计划算法,以使机器人执行生成的共同工作策略,而人类操作员则在MR环境中获得了直观的任务操作指导,以实现同情的协作。通过演示衰老电池的拆卸任务,实验结果促进了积极主动的HRC的认知智能,以进行灵活的自动化。
文章引用:Zhabotynska, SA (2024)。读者对政治新闻叙事的接受:多模态性和互文性。认知、交流、话语,29,86-103。doi.org.10.26565/2218-2926-2024-29-06 摘要 战略叙事理论(Miskimmon 等人,2013 年;2017 年等)是在国际关系领域发展起来的,它将战略叙事视为政治行为者建构国际政治共同意义的一种手段,并塑造国内和国际行为者的看法、信念和行为。该理论的作者认为,对战略叙事运作的解释需要研究其形成、投射和接受。这种解释将各个学术领域聚集在一起,旨在寻找缺乏的方法论,以展示战略叙事的形成、投射和接收方面如何像三联画一样协同工作。本文从认知语言学的角度探讨了这个问题,认知语言学研究口头传递信息的概念基础。本文提出并测试了一个新颖的方法论框架,该框架假定以口头和视觉呈现的信息的认知本体论,作为追踪三个叙事方面同时动态的规律的可行基础。本文重点关注媒体新闻文本中所呈现的投射/接收叙事方面以及读者对此的反应——这是与互文性语言领域相关的问题。从方法论和主题上看,本文延续了先前的研究(Zhabotynska & Velivchenko,2019 年;Zhabotynska & Ryzhova,2022 年;Chaban 等人,2023 年;Chaban 等人,2024 年等),研究新闻媒体文本中的战略叙事的形成/投射方面。
事件摄像机最近显示出对实用视觉任务的有益,例如行动识别,这要归功于其高度分辨率,功率效率和引起的隐私问题。然而,当前的研究是由1)处理事件的困难,因为它们的持续时间长时间和动态动作具有复杂而模棱两可的语义; 2)事件框架表示带有固定堆栈的冗余作用。我们发现语言自然传达了丰富的语义信息,从而使其在降低疾病的不确定性方面非常出色。鉴于此,我们提出了一种新颖的方法,这是第一次解决基于事件的动作识别的跨模式概念化的识别。我们的确切确切带来了两项技术贡献。首先,我们提出了一个自适应细粒事件(AFE)表示,以自适应地过滤固定对象的重复事件,同时保留动态的对象。这巧妙地增强了精确的性能,而无需额外的计算成本。然后,我们提出了一个基于概念推理的不确定性估计模块,该模块模拟了识别过程以丰富语义代表。尤其是,概念推理基于动作语义建立时间关系,而不必要的估计可以解决基于分布表示的动作的语义不确定性。实验表明,在PAF,HADDV和我们的SEACT数据集上,我们的确切确切识别获得了94.83%(+2.23%),90.10%(+2.23%),90.10%(+37.47%)和67.24%。
神经退行性疾病的特征是进行性神经元丧失和认知能力下降,这是对老龄化人群的重要关注点。Neuroin浮肿与它们的发病机理有关。本文Brie brie brie概述了镁的作用,镁的作用是众多酶促反应,对神经元的生物活性至关重要,在神经蛋白的流经和认知能力下降的背景下。还描述了镁的潜在神经保护作用,包括镁通过维持神经元离子稳态,减少炎症和预防兴奋性毒性的神经保护作用。此外,我们讨论了镁不足对神经蛋白膨胀的影响及其作为减弱认知下降以改善神经退行性疾病的治疗剂的潜力。
● Ascension Borgess 医院('23) ● Ascension Genesys 医院('23) ● Ascension St. John 医院('23) ● Ascension St. Mary's 医院('23) ● Ascension Providence 医院 — Novi('23) ● Ascension Providence 医院 — Southfield('23)
面部表达识别(FER)在计算机视觉应用中起着关键作用,包括视频不存在和人类计算机的相互作用。尽管FER的进展没有局部进步,但在处理在现实世界情景和数据集中遇到的低分辨率面部图像时,性能仍然会摇摆不定。一致性约束技术引起了人们的关注,以产生强大的卷积神经网络模型,从而通过增强来适应变化,但它们的功效在低分辨率FER的领域中得到了影响。这种性能下降可以归因于网络难以提取表达特征的增强样本。在本文中,我们确定了在考虑各种程度的分辨率时引起过度拟合问题的硬样品,并提出了新颖的硬样品感知一致性(HSAC)损失函数,其中包括组合注意力同意和标签分布学习。通过结合高分辨率和翻转低分辨率图像的激活图,将注意力图与适当的目标注意图与适当的目标注意图与适当的目标注意力图相结合的注意图与适当的目标注意力图的注意力图对齐。我们通过结合原始目标和高分辨率输入的预测来测量低分辨率面部图像的分类难度,并适应标签分布学习。我们的HSAC通过有效管理硬样品来赋予网络能够实现概括。各种FER数据集上的广泛实验证明了我们提出的方法比现有方法的多尺度低分辨率图像的优越性。此外,我们在原始RAF-DB数据集中达到了90.97%的最新性能。
一些认知能力被认为是复杂社会生活的结果,这种社会生活使个体能够通过先进的策略实现更高的适应性。然而,大多数证据都是相关的。在这里,我们进行了一项实验研究,研究群体大小和组成如何影响孔雀鱼 (Poecilia reticulata) 的大脑和认知发育。在 6 个月的时间里,我们按照 3 种社会处理方法中的一种饲养性成熟的雌性:一个小的同类群,由 3 只孔雀鱼组成;一个大的异类群,由 3 只孔雀鱼和 3 只溅斑灯鱼 (Copella arnoldi) 组成——一种在野外与孔雀鱼共存的物种;以及一个大的同类群,由 6 只孔雀鱼组成。然后,我们测试了孔雀鱼在自我控制 (抑制控制)、操作性条件反射 (联想学习) 和认知灵活性 (逆向学习) 任务中的表现。使用 X 射线成像,我们测量了它们的大脑大小和主要大脑区域。 6 只个体组成的较大群体(包括同种群体和异种群体)表现出比较小群体更好的认知灵活性,但在自我控制和操作性条件反射测试中没有差异。有趣的是,虽然社交操纵对大脑形态没有显著影响,但相对较大的端脑与更好的认知灵活性相关。这表明,除了大脑区域大小之外,其他机制使来自较大群体的个体具有更大的认知灵活性。虽然没有明确的证据表明对大脑形态的影响,但我们的研究表明,生活在较大的社会群体中可以提高认知灵活性。这表明社会环境在古比鱼的认知发展中发挥着作用。