本文介绍了基于尖端的面部识别出勤系统,旨在通过整合高级机器学习,计算机视觉和地理空间API来解决传统出勤方法的局限性。系统通过高精度和效率自动化与会者的识别和记录来简化出勤过程。关键功能包括用于实时面部识别的实时视频识别,一个用于注册新个人的直觉用户注册模块,基于CSV的无缝数据导出和管理的日志记录以及地理位置感知到的出勤跟踪,以确保记录不仅是时间含量的,而且是位置特定的。这种地理空间上下文提供了宝贵的见解,尤其是对于分布式团队或多站点设置。
Noninvasive Cardiology Cardiovascular Disease Nuclear Cardiology Cardiovascular Disease Diagnostic Radiology Nuclear Medicine Preventive Cardiology Cardiovascular Disease Pulmonary Vascular Disease Cardiovascular disease Sports Cardiology Cardiovascular disease Vascular Anomalies Cardiovascular Disease Vascular Surgery Vascular Brachytherapy Cardiovascular Disease Vascular Medicine Cardiovascular Disease Internal Medicine Pulmonary Disease肺部疾病和重症医学儿科咨询精神病学儿童和青少年精神病学咨询 - 精神病学精神病学儿科心理药物学儿童和青少年精神病学临床磁脑脑力学和神经外神经外科神经外科治疗儿童癫痫儿童癫痫症治疗儿童神经神经病学儿童学神经神经神经神经神经神经神经神经神经神经神经神经神经神经神经神经神经神经神经神经神经神经神经神经神经神经神经神经神经神经神经神经神经疗法儿童神经病学新生儿 - 上世医学新生儿神经病学和脑发育儿童神经病学儿童新生儿 - 上期医学儿科儿科脑血管神经病学儿童神经病学临床神经物理学儿童神经病学儿童神经病学儿童学障碍儿童运动障碍儿童运动障碍儿童神经儿童病学分裂儿童病学
不平衡的数据集对神经科学、认知科学和医学诊断等领域构成了重大挑战,在这些领域中,准确检测少数类别对于稳健的模型性能至关重要。本研究以 DEAP 数据集中的“喜欢”标签为例,解决了类别不平衡问题。这种不平衡经常被先前的研究忽视,这些研究通常侧重于更平衡的唤醒和效价标签,并主要使用准确度指标来衡量模型性能。为了解决这个问题,我们采用了旨在最大化曲线下面积 (AUC) 的数值优化技术,从而增强了对代表性不足的类别的检测。我们的方法从线性分类器开始,与传统的线性分类器(包括逻辑回归和支持向量机 (SVM))进行了比较。我们的方法明显优于这些模型,召回率从 41.6% 提高到 79.7%,F1 分数从 0.506 提高到 0.632。这些结果强调了通过数值优化实现 AUC 最大化在管理不平衡数据集中的有效性,为提高在样本外数据集中检测少数但关键类别的预测准确性提供了有效的解决方案。
可持续的金融欺诈检测包括在金融领域欺诈行为识别中使用可行且得体的表现。信用卡容易受到网络威胁,从而导致信用卡欺诈。欺诈者通过非法获取信用卡信息进行不诚实的行为,这种行为会给用户和公司带来经济损失。目前,深度学习 (DL) 和机器学习 (ML) 系统被部署在金融欺诈检测中,因为它们具有制造出发现欺诈交易的强大设备的功能。本文提出了一种基于云计算的财务管理财务数据分析,使用深度强化学习模型 (FDAFM-CCDRLM)。FDAFM-CCDRLM 模型的主要目的是改进经济管理中财务数据的分析。首先,在数据规范化阶段采用最小-最大规范化将输入数据转换为合适的格式。此外,提出的 FDAFM-CCDRLM 模型为特征选择过程的子集设计了一种黑翅风筝算法 (BKA)。对于分类过程,我们执行了双深度 Q 网络 (DDQN) 算法。最后,我们采用基于人工蜂群 (ABC) 算法的超参数范围方法来改进 DDQN 模型的分类结果。FDAFM-CCDRLM 系统的实验评估可以在基准数据库上进行测试。广泛的成果凸显了 FDAFM-CCDRLM 方法对金融数据分析分类过程的重要解决方案
认知脑成像正在积累有关许多不同心理过程的神经基础的数据集。然而,大多数研究都基于少数受试者,统计能力较低。跨研究分析数据可以带来更多的统计能力;然而,当前的脑成像分析框架无法大规模使用,因为它需要将所有认知任务置于统一的理论框架中。我们引入了一种新方法来分析跨任务的大脑反应,而无需心理过程的联合模型。该方法通过联合分析具有特定认知重点的小型研究与探究不太重点的心理过程的大型研究,提高了小型研究的统计能力。我们的方法提高了 35 项差异很大的功能成像研究中 80% 的解码性能。它通过预测心理过程的共同大脑表征,以数据驱动的方式发现跨任务的共性。这些是适应心理操纵的大脑网络。它们概述了可解释和合理的大脑结构。提取的网络已经可用;它们可以在新的神经成像研究中轻松重复使用。我们提供了一个多研究解码工具来适应新数据。
成年后,人类从稀疏的视觉显示中迅速识别物体,并在其外观上遇到重大干扰。实现强大的识别能力所需的最小条件是什么?这些能力何时会发展?要回答这些问题,我们研究了儿童对象识别能力的上限。我们发现,在稀疏且干扰的观看条件下,以100 ms(前向和向后掩盖的速度)成功地识别了3岁的儿童。相比之下,具有生物学知情属性或为视觉识别进行优化的范围计算模型未达到儿童级表现。模型只有与儿童能够体验更多的对象示例相匹配的。这些发现在没有丰富经验的情况下突出了人类视觉系统的鲁棒性,并确定了建造生物学上合理的机器的重要发育限制。
成年后,人类从稀疏的视觉显示中迅速识别物体,并在其外观上遇到重大干扰。实现强大的识别能力所需的最小条件是什么?这些能力何时会发展?要回答这些问题,我们研究了儿童对象识别能力的上限。我们发现,在稀疏且干扰的观看条件下,以100 ms(前向和向后掩盖的速度)成功地识别了3岁的儿童。相比之下,具有生物学知情属性或为视觉识别进行优化的范围计算模型未达到儿童级表现。模型只有与儿童能够体验更多的对象示例相匹配的。这些发现在没有丰富经验的情况下突出了人类视觉系统的鲁棒性,并确定了建造生物学上合理的机器的重要发育限制。
大多数日常活动需要灵巧地使用手和手指。残疾人的手部假肢可以通过连接到上肢的表面电极非侵入式获取的表面肌电图 (sEMG) 信号来控制。在对从 10 位截肢者获取的 12 个电极 sEMG 信号进行预处理后,计算了时域和频域中的不同特征。考虑到 sEMG 是一种复杂、随机、非平稳和非线性信号,还通过多重分形去趋势波动分析 (MFDFA) 的方法提取了复杂的非线性特征。使用不同的分类方法(包括支持向量机 (SVM)、线性判别分析 (LDA) 和多层感知器 (MLP))来比较它们在八种不同手指运动分类中的表现。观察发现,SVM 在手指运动分类方面的表现优于其他两个分类器。新特征与传统特征融合后,分类准确率、精确率、召回率(灵敏度)分别为98.70%、98.74%、98.67%。结果表明,加入MFDFA提取的新特征与其他传统特征,可以有效提高数据采集效果。
准确地识别草坪边界是草坪割草机器人的可行操作的基础。当前的草坪边界识别方法依赖于预埋的电缆或通过RTK-GPS定位技术绘制边界。两种方法都容易受到定位错误和环境变化的影响。实时识别基于图像的草坪边界的实时识别可以在路径计划和对草坪割草机器人的边界识别之间形成实时闭环,从而提高了机器人工作的鲁棒性和可靠性。U-NET网络是一个简单的图像分割模型,适用于具有有限计算资源的机器人。但是,草坪的二元分割的结果通常是开放的边界线,这与医学图像中U-NET模型的某些多闭合单元的结果不同。因此,很难将U-NET模型直接应用于准确的草坪分割。考虑到草坪图像的特征和有限的计算资源,本文引入了具有通道空间注意机制和变化的损耗函数的改进的U-NET模型,这更好地解决了草坪边界识别的问题。改进模型的MDICE值为97.7%,比原始U-NET模型高约2%。
4美国加利福尼亚州斯坦福大学的神经外科系,5神经科学计划,伊利诺伊州Urbana-Champaign,伊利诺伊州Urbana-Champaign,伊利诺伊州Urbana,伊利诺伊州Urbana,美国伊利诺伊州伊利诺伊州乌尔巴纳大学的人工智能创新中心,6,伊利诺伊州工程学院,伊利诺伊州,伊利诺伊州乌里诺斯大学,伊利诺伊州乌里诺斯·塞拉纳,工程学院。伊利诺伊州Urbana-Champaign,伊利诺伊州乌尔巴纳大学,伊利诺伊州乌尔巴纳大学工程学,机械科学与工程学,美国伊利诺伊州乌尔巴纳 - 欧巴纳大学分子与综合生理学系8伊利诺伊州乌尔巴纳,美国4美国加利福尼亚州斯坦福大学的神经外科系,5神经科学计划,伊利诺伊州Urbana-Champaign,伊利诺伊州Urbana-Champaign,伊利诺伊州Urbana,伊利诺伊州Urbana,美国伊利诺伊州伊利诺伊州乌尔巴纳大学的人工智能创新中心,6,伊利诺伊州工程学院,伊利诺伊州,伊利诺伊州乌里诺斯大学,伊利诺伊州乌里诺斯·塞拉纳,工程学院。伊利诺伊州Urbana-Champaign,伊利诺伊州乌尔巴纳大学,伊利诺伊州乌尔巴纳大学工程学,机械科学与工程学,美国伊利诺伊州乌尔巴纳 - 欧巴纳大学分子与综合生理学系8伊利诺伊州乌尔巴纳,美国