。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本于2025年3月1日发布。 https://doi.org/10.1101/2025.02.26.640353 doi:Biorxiv Preprint
本文介绍了几种方法:一种基于居民分离的方法,称为SEQ2RES,另一种基于多标签分类,称为BigRu+Q2L。第三种方法将它们结合到两个阶段的模型中。与以前的分离不同,将传感器事件分配给居民一一将传感器事件分配给居民,SEQ2RES采用序列到序列(SEQ2SEQ)[18] ARCHITCOUNT。它对整个传感器序列进行建模,并基于建模上下文生成分离的序列。另一方面,Bigru+Q2L使用注意机制不仅在活动标签之间,而且在标签和特征之间进行构成相关性。这可以实现更准确,更灵活的多标签分类。最后,这两种方法是在一个模型中组合在一起的,该模型将居民信息分开,同时考虑居民活动的相关性。
全天摄入碳水化合物。必须考虑并衡量我这么年轻的我吃的东西很难。”值得庆幸的是,在过去的50年中,情况发生了巨大变化,尤其是在过去的12个月中,随着欢乐的开始使用胰岛素泵这是一种小型电子设备,可释放您身体需求的常规胰岛素,因此她不再需要每天注射。Joy现在还戴上Dexcom - 放在手臂上的自动血糖监测仪,并连接到手机上的应用程序,该应用程序记录了所有健康数据。乔伊说:“技术的最新进展一直在改变我的生活。我希望其他人知道,如果您接受1型糖尿病诊断,您仍然可以做任何事情!只要注意,请务必携带准备,以防万一,以防您获得所有可用的支持,并在您的糖尿病诊所聆听您的专业护士,营养师和顾问。我一直是我的宝贵建议来源。我喜欢摄影,跋涉穿过丛林,爬山,去过像婆罗洲和爪哇这样的地方,被野生大象指控,并在活火山的顶部打破了我的腿。我经历了很多冒险 - 我的糖尿病从未阻止我!”糖尿病专家护士安娜·玛丽·杰森(Anna-Marie Jesson)说:“我们的目标是让患者拥有长期,健康且充实的生活,并患有糖尿病,而没有糖尿病控制自己的生活。1型糖尿病依赖于每周7天24小时的胰岛素注射或输液,而仅在1922年才发现胰岛素 - 因此,Joy一直使用胰岛素一半的时间!她看到了许多积极的变化,我们期待着未来50年的更多发展。”
。但是,裁定设备操作的物理和化学裁定仍未完全揭示。在这项工作中,目的是阐明设备观察到的灵敏度的性质。朝着这个目标,一个物理化学模型,再加上RGO-EGT的实验表征,可以定量地将栅极电极处的生物认知事件与RGO-EGT的电子特性相关联。显示出在栅极电极处发生的生物识别的平衡,以确定RGO通道的表观电荷中性点(CNP)。RGO-EGT实验传递特性的多参数分析表明,识别事件调节CNP电压,过量的载体密度n n和RGO的量子电容。该分析还解释了为什么孔和电子载体迁移率,界面电容,转移曲线的曲率和跨导性对目标浓度不敏感。对生物识别事件晶体管转导的机制的理解是解释RGO-EGT免疫传感器响应的关键,并指导新颖和更敏感的设备的设计。
摘要信息和无线通信技术的快速发展,以及最终用户数量的大幅度增加使无线电频谱比以往任何时候都更加拥挤。此外,随着电磁环境正在发展并变得越来越复杂,提供稳定且可靠的服务是具有挑战性的。因此,迫切需要更可靠和智能的通信系统,以提高频谱效率和服务质量以提供网络资源的敏捷管理,从而更好地满足未来无线用户的需求。特别是自动调制识别(AMR)在大多数智能通信系统中起着至关重要的作用,尤其是随着软件定义无线电(SDR)的出现。AMR是在认知无线电(CR)中执行频谱传感的一项必不可少的任务。多亏了深度学习(DL)应用中的显着进步,已经提供了新的和强大的工具,可以解决该领域的问题。因此,今天,将DL模型整合到AMR中已引起了许多研究人员的关注。这项工作旨在提供针对单输入单输出(SISO)和多输入多输出(MIMO)系统的最新机器学习(ML)AMR方法的全面最新审查。此外,将确定每个模型的体系结构,并在规范和性能方面进行详细的比较。最后,提供了开放问题,挑战和潜在的研究方向的概述以及讨论和结论。
摘要 - 可润滑的天线(RA)是一种具有巨大潜力来利用额外空间自由度(DOF)的新兴技术,它通过灵活地改变每个天线的三维(3D)方向/无视。在此演示中,我们开发了具有RA支持的无线通信系统的原型,该原型具有视觉识别模块,以评估RA在实用环境中提供的绩效增长。尤其是通过对数字伺服电机,定向天线和微控制器进行机械驱动的RA的开发,该电动机能够动态调整RA方向。此外,RA的方向调整是由目标识别模块提供的目标的方向指导的,从而显着提高了系统响应速度和定向精度。实验结果表明,与常规的基于固定天线的系统相比,基于RA的通信系统在通信覆盖效果方面取得了出色的改进。索引术语 - 可润滑的天线,视觉识别,3d orimitation。
Hannah D. Franklin 1, Lucy L. Russell 1, Georgia Peakman 1, Caroline V. Greaves 1, Martina Bocchetta 1, Jennifer Nicholas 2, Jackie Poos 3, Rhian S. Convery 1, David M. Cash 1.4, John Van Swieten 3, Lize Jiskoot 1.3, Ferin Moreno 5.6, Raquel Sanchez-Valle 7, Barbara Borroni 8,罗伯特·拉福斯(Robert Laforce Jr)9,马里奥·马塞利斯(Mario Masellis)10,玛丽亚·卡梅拉·塔塔格利亚(Maria Carmela Tartaglia)11,卡罗琳·格拉夫(Caroline Graff)12.13,daniela galimberti 14.15,詹姆斯·B·罗(James B.塔利亚维尼(Tagliavini)24,伊莎贝尔·桑塔纳(Isabel Santana)25.26,西蒙·杜切尔(Simon Ducharmers)27.28,克里斯·巴特勒(Chris Butler)29,亚历克斯·格哈德(Alex Gerhard)30.31,约翰内斯·莱文(Johannes Levin)32,33.34,阿德里安·丹尼克(Adrian Danek)32,马克斯·奥托(Markus otto) Jonathan D. Rohrer 1*和代表遗传FTD倡议,Genfi
面部识别技术(FRT)的广泛采用引起了人们对隐私,道德AI设计和算法偏见的关键关注。随着面部生物识别技术越来越多地整合到安全,零售,医疗保健和执法申请中,确保遵守全球数据保护法至关重要。诸如欧盟一般数据保护法规(GDPR)之类的法规要求组织在收集和处理生物识别数据之前获得明确的同意,从而增强了个人隐私权[24]。同样,《加州消费者隐私法》(CCPA)授予消费者控制其生物识别信息,需要在数据处理实践中透明度[25]。
坚强地识别面孔的能力对于我们作为社会生物的成功至关重要。然而,我们仍然对允许某些人在面部识别方面表现出色的大脑机制知之甚少。这项研究建立在一个相当大的神经数据集的基础上,该数据集测量了具有非凡的面部识别能力的人的大脑活动(super-coppenters),以应对这一挑战。使用最先进的计算方法,我们从仅仅一秒钟的大脑活动中就显示出对单个个体中面部识别能力的强大预测,并揭示了支持个人识别能力中个体差异的特定大脑计算。这样做,我们提供了直接的经验证据,证明了人类大脑中语义计算与面部识别能力之间的关联,这是突出的面部识别模型的关键组成部分。
。cc-by-nc 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。是