1。世界上高磁场的磁铁开发项目2。HFLSM的无冻磁体开发•从Rebco线圈的失败中学到的经验教训3.稳健的Rebco线圈概念•两个捆绑绕组Rebco线圈具有局部损坏•大规模Rebco R&D Coil 4。33T无冰低导的磁铁发育5。摘要
• Scaling up NI coils results in a very slow ramp time due to high L/R time constant • Putting novel partial insulation (PI) between turns allows desired, higher, turn-to-turn resistance (R) • L/R ramp time constant can be reduced to suit coil size and application • PI allows fast ramping of large coils, but retains the excellent quench stability & defect tolerance demonstrated in our solder potted NI线圈
耦合模式 电感 电感 电磁反向散射 工作频率 125kHz – 134kHz 13.56MHz 860MHz – 960MHz 天线线圈 线圈偶极子 最大工作距离可达 1m 附近:可达 1m 近距离:可达 10cm
摘要。超导体技术技术的关键问题之一是防止淬火的保护。在将超导体设计为磁铁,线圈甚至电流导线时,应进行设计,以使超导体承受所有操作条件,尤其是那些迅速出现的操作条件,以快速排放或脉冲载荷。在使用Simulia Opera Platform中使用有限元分析的脉冲传输电流条件(零外部场)研究了基于NBTI绕组的超导赛车线圈模型。通过将电容器排放到包括超导体线圈作为元素的RLC电路中,可以产生几毫秒的脉冲持续时间和超过1 ka的峰值电流。已经进行了包括热和电磁溶液的多物理分析。过渡到正常状态和淬灭的发生与预期的临界曲线以及现有线圈几何形状估计的负载线一致。
抽象对象提高了超高野外系统的光滑功能,并在7 t处添加了可访问的低复杂性B 0用于头部MRI的Shim Array阵列。材料和方法八个频道B 0 Shim Coil阵列的设计是在易于改进和构造复杂性之间进行的权衡,以便可轻松使用Shim阵列,以提供可与标准的7 t Head coil一起使用的Shim阵列。使用开源八通道垫片放大器机架将阵列连接。将全脑和基于切片的光滑的场均匀性改善与标准的二阶光合物进行了比较,并与具有32和48个通道的更复杂的高阶动态垫片和垫片阵列进行了比较。结果八通道垫片阵列可在整个脑部静态弹药中提高12%,并在使用基于切片的垫片时提供了33%的改进。这样,八通道阵列的执行类似于三阶动态垫片(无需高阶涡流补偿)。更复杂的垫片阵列具有32和48个通道的性能更好,但需要专用的RF线圈。讨论设计的八通道Shim阵列提供了一种低复杂性和低成本方法,可改善B 0在超高场系统上的弹跳。在静态和动态杂物中,它在标准弹跳中提供了改进的B 0均匀性。
ISO 11'784/11'785仅阅读无接触式识别设备描述EM4005/EM4105(以前命名为H4005/H4105)是CMOS集成电路,用于电子读取仅用于电子读取的RF Transponders。该电路由放置在电磁场中的外部线圈提供动力,并通过一个线圈端子从同一磁场获取其主时钟。另一个线圈端子受调制器的影响。通过打开和关闭调制电流,芯片将发送回工厂预编程的内存数组中包含的128位。芯片的编程是通过polysilicon链接的激光融合来执行的,以便在每个芯片上存储一个唯一的代码。由于逻辑核心的功耗低,因此不需要电源缓冲电容器。仅需要外部线圈才能获得芯片函数。还集成了75 PF的平行共振电容器。
图。S1。 MI实验和数据分析。 (a)在显微镜下使用的MI探针。 整个线圈组件都用环氧树脂铸造,并安装在镀金的铜安装座上。 将样品安装在上面的平台是一个盖章的金色镀铜弹簧,将热锚定在芯片载体上。 (b)补充文本中解释说,我们的MI探针的相互电感函数M(x)是无量纲横向空间波矢量的函数。 虚线是Jeanneret等人使用的开拓性线圈的M(X)。 插图在左侧显示驱动器(绿色)和接收(棕色)线圈的显微镜图像。S1。MI实验和数据分析。(a)在显微镜下使用的MI探针。整个线圈组件都用环氧树脂铸造,并安装在镀金的铜安装座上。将样品安装在上面的平台是一个盖章的金色镀铜弹簧,将热锚定在芯片载体上。(b)补充文本中解释说,我们的MI探针的相互电感函数M(x)是无量纲横向空间波矢量的函数。虚线是Jeanneret等人使用的开拓性线圈的M(X)。插图在左侧显示驱动器(绿色)和接收(棕色)线圈的显微镜图像。插图是实际相互感应探针的示意图。a:加工的尼龙底座,用于绕线; B:使用隔热的20 µm铜线较低接收线圈; C:使用相同的电线接收线圈; D:使用隔热的40-AWG铜线驱动线圈; E:由银环氧树脂连接到屏蔽的同轴电缆连接的扭曲接收线条。 F:由银环氧树脂连接到扭曲的一对的扭曲驱动线条。 G:带有银色油漆的样品; H:盖平面的镀金铜弹簧,用于热膨胀补偿; I:镀金的铜架,用于线圈组件; J:两个尼龙螺钉以固定线圈组件。(c)MI数据处理过程,其示例数据集在100 kHz的零字段中。BINNED原始数据显示为直接在SR830锁定放大器的任一个正交中测量。(d)去除相应的恒定背景后,将两个四二晶组设置为> 1。5 K.(e)相移后,基于re [v](h = 0,t = 0)= 0。