联合药物疗法是成功治疗多种疾病的关键,在这些疾病中单一疗法效果不够好或出现了耐药性。因此,开发新的药物组合是主要关注点。固定剂量组合也是如此,近年来批准的固定剂量组合有所增加。开发固定剂量组合通常需要进行大规模析因设计研究以验证组合的疗效。随着对药物个性化的更多关注,需要为患者提供几种剂量水平的固定剂量组合。对于析因设计研究,这将导致非常昂贵的临床试验。为了降低开发成本并指导药物开发,必须验证现有工具并开发新工具。然而,用于分析固定剂量组合的此类基于模型的工具还处于起步阶段。
研究药物从给药部位移动到药理作用部位并从体内消除的过程称为“药代动力学”。影响药物在体内移动(动力学)和命运的因素有:(1)从剂型中释放;(2)从给药部位吸收进入血液;(3)分布到身体各个部位,包括作用部位;(4)通过代谢或排泄原形药物从体内消除的速率。这些过程通常用首字母缩略词 ADME 来表示:吸收、分布、代谢和排泄。药物的 ADME 参数用各种术语来描述,例如 Cmax(血清中药物的最大浓度);Tmax(达到最大药物浓度的时间)
摘要简介/目标。草药一直是整个人类历史上至关重要的可再生医学来源,因为大部分全球人口仍然取决于它们的健康益处。草药补充剂的日益普及引起了人们对与其他药物原位的总体安全性和潜在互动的明显关注。目的是刺激对草药 - 药物相互作用的未来研究,以及了解这种相互作用的后果的相互作用机制。方法。该审查是通过使用Google Scholar,Science Direct,Mendeley,Scopus和PubMed的数据库进行系统搜索进行的。用英语编写的出版物被使用。据报道,许多草药产品与已知的东正教药物相互作用。抑制诱导机制触发链反应,通常导致药物生物利用度,毒性或不良副作用降低。据报道,一些草药植物构成结合了CYP2C9,CYP2C19,CYP2E1和CYP3A1,以及许多其他暂时或不可逆地结合了CYP3A1。结论。这项研究是通过重申常规和定期向医生和患者提供固有危险(例如降低疗效和与Herb-Drug相互作用(HDI)相关的毒性增加)的不完善性结束的结论。草药使用者应定期建议适当使用草药补充剂,以避免在共同给药期间或联合疗法中发生不良药物相互作用的风险。在HDI中可以观察到协同作用和拮抗作用,因此需要进一步的临床前和临床经验研究来强调HDI的机制和程度。关键字:草药 - 药物相互作用,酶,药代动力学互动,传统医学,细胞色素P450通讯作者:Mary O. Ologe电子邮件:FunMiologe@yahoo.com
1儿科,妇科和妇产科系,CANSEARCH研究平台,儿科肿瘤学研究平台,瑞士日内瓦大学,日内瓦大学,日内瓦大学医学院2蒙佩利·埃雷恩·亚历山大·格罗顿迪克(Imim),CNRS,UMR 5149,蒙彼利埃大学,蒙彼利埃大学,蒙彼利埃,法国5149,法国5149,临床药理学和毒理学部,部门巴塞尔,巴塞尔,瑞士和巴塞尔大学,瑞士巴塞尔大学8血液学分部,骨髓移植单元,日内瓦大学医院,日内瓦大学医院和医学院,瑞士日内瓦大学医学肿瘤学和血液学系9日内瓦大学医学肿瘤学和血液学系,瑞士苏里奇,瑞士,瑞士,瑞士学院10级,船长学院。瑞士Aarau 11儿科肿瘤学和血液学分校,瑞士日内瓦大学日内瓦医院妇女,儿童和青少年系
在GOF图上以图形方式评估了最终的PK模型,包括观察到的值与个人预测或人口预测,有条件加权残差(CWRE)与时间,绝对个体的加权残差(| iWRES |)与个人预测以及CWRE的正常性测试。进行hootstrap以内部验证最终模型。原始数据集用于模拟1,000个附加数据集,每个数据集用于使用最终模型重新估算参数。中值和95%的置信区间(CI),并将其与最终模型参数估计值进行比较,以评估最终模型的鲁棒性。视觉预测检查(VPC)用于评估最终模型的预测能力。进行了1000个模拟,并比较了观察到的数据与模拟数据的第2.5,第50和97.5个百分位数。
通讯作者:Jean-Baptiste Woillard标题:Pharmd,Phd OrcID:0000-0003-1695-0695; 0000-0001-6147-9201地址:大学。LIMOGES,INSERM U1248 P&T,2 Rue du Pr Descottes,F-87000 Limoges,法国。电话:+33 5 55 05 61 40传真:+33 5 55 05 61 62电子邮件:Jean-Baptiste.woillard@unilim.fr作者确认本文的主要研究人员是Pierre Marquet教授和
在 IMMU-132-01 中,分析了转移性上皮癌(包括 HR+/HER2- mBC、mTNBC 和 mUC)患者中 SG 8 mg/kg(n=81)和 10 mg/kg(n=97)的 PK 曲线。10 mg/kg 组血清中总 SN-38 水平中位数在 30 分钟时为 4234 ng/mL,在第 1 天为 1334 ng/mL。游离血清 SN-38 水平在 30 分钟时为 95.3 ng/mL,在第 1 天为 56.9 ng/mL。游离 SN-38 的 AUC 占总 SN-38 的 ~2.5%,这表明大部分血清 SN-38 与 IgG 结合。约 90% 的 SN-38 在 3 天内从 ADC 中逐渐释放。 SG 的 t 1/2 约为 11 至 14 小时,反映出 SN-38 从结合物中释放出来。单克隆抗体清除得更慢(t 1/2:约为 103 至 114 小时)。
1以外的咨询有限公司14 Tytherington Park Road,Macclesfield,Cheshire,UK SK10 2EL 2 ELLIVERPOOL利物浦大学药理学与治疗系超过125 nmol/L的25-羟基维生素D与潜在毒性有关。使用基于生理的药代动力学模型,基于南非开普敦的一项随机对照试验,我们显示了2000 IU每日剂量,欧洲食品安全局建议将其作为安全剂量,预计将导致血清浓度超过125 Nmol/l threshold,其中一些儿童和青少年中有125 nmol/l阈值。这突出了不同准则与使用建模来弥合剂量和药代动力学之间的差距之间的不一致。简介维生素D代谢产物25-羟基维生素D(25(OH)D)的血清水平被广泛接受为维生素D状态的标志物。,工作定义包括缺乏症(<30 nmol/l),不足(30 - 50 nmol/l),适当度(50 - 125 nmol/l)(50 - 125 nmol/l)和潜在的毒性(> 125 nmol/l)[1-3] [1-3] [1-3] [1-3]。对于儿童(1-11岁)和青少年(12-18岁),内分泌学会建议补充经验性维生素D,以防止营养易人RICKET,并有可能降低呼吸道感染的风险[2]。在预防呼吸道感染的研究中评估了300 - 2000 IU之间的每日剂量,但内分泌学会建议不建议使用特定剂量[2]。根据欧洲食品安全局(EFSA)的说法,每天剂量至2000 IU对1-10岁的儿童安全[4]。作为第一步,一个有用的目标是通过药代动力学(PK)建模来检查NASEM和EFSA指南之间的一致性,该建模以公正的方式集成了无访问信息。到目前为止,据报道,慢性肾脏病[5]和肥胖和哮喘儿童的口服维生素D建模[6]。这些报告突出了基于体重的剂量选择方法的重要性。不幸的是,没有针对健康的孩子建立建模。,我们基于对南非开普敦健康学童的3年研究[7],开发了一种基于生理的药代动力学(PBPK)模型[8,9]。性别和体重被用作协变量来预测不同隔室的体积,并且使用年龄范围的体重指数(ZBMI)来预测脂肪质量。在不同的论文中报告了该模型的发展和资格[10]。要检查一致性,我们的目标是评估血清25(OH)D在儿童(6-10岁)和青少年(11-17岁)的每日各种剂量下如何改变。生产快速
1大学是De Montpellier Institut Du Cancer de Montpellier,De Montpellier,208 Rue des Atathicaires,34298法国Montpellier; ludovic.gauthier@icm.unicancer.fr(L.G.); marie.alexandre@icm.unicancer.fr(M.A。); severine.guiu@icm.unicancer.fr(S.G.); nelly。); stephane.pouderoux@icm.unicancer.fr(S.P.); marie.viala@icm.unicancer.fr(M.V.); gerald.lossaint@icm.unicancer.fr(G.L. ); chloe.gautier@icm.unicancer.fr(c.g. ); caroline.mollevi@icm.unicancer.fr(C.M. ); william.jacot@icm.unicancer.fr(W.J.) 2癌症研究所是Rogie de Montpellier,Censm u1194,University,University是蒙彼利埃,法国蒙彼利埃34090; morteugulia@hotmail.fr(M.G. ); celine.gongora@enverm.fr(C.G. ); litaty.mbatchi@umontpellier.fr(L.M. ); Alexandre.evrard@umontpellier.fr(A.E。) 3 Laboratoire dePharmacocinétique,Actiult de Pharmacie,UniversitédeMontpellier大学,34090 Montpellier,France 4 Service D'OncologieMèdicale,Chu deNîmes,Cedex 9,930029Nîmes,France;弗雷德里克(Frederic)。电话 : +33-4-6761-2477); chloe.gautier@icm.unicancer.fr(c.g.); caroline.mollevi@icm.unicancer.fr(C.M.); william.jacot@icm.unicancer.fr(W.J.)2癌症研究所是Rogie de Montpellier,Censm u1194,University,University是蒙彼利埃,法国蒙彼利埃34090; morteugulia@hotmail.fr(M.G.); celine.gongora@enverm.fr(C.G.); litaty.mbatchi@umontpellier.fr(L.M.); Alexandre.evrard@umontpellier.fr(A.E。)3 Laboratoire dePharmacocinétique,Actiult de Pharmacie,UniversitédeMontpellier大学,34090 Montpellier,France 4 Service D'OncologieMèdicale,Chu deNîmes,Cedex 9,930029Nîmes,France;弗雷德里克(Frederic)。电话: +33-4-6761-2477
摘要:酪氨酸激酶抑制剂 (TKI) 在癌症治疗方法的革命性发展中发挥了决定性作用,为提高生活质量提供了非侵入性、可耐受的治疗方法。尽管如此,TKI 治疗的反应程度和持续时间取决于癌症分子特征、产生耐药性的能力、种系变异引起的药代动力学改变以及膜转运蛋白和代谢酶水平上不必要的药物相互作用。大量获批的 TKI 是有机阳离子转运蛋白 (OCT) 的抑制剂。少数也是它们的底物。这些转运蛋白具有多特异性,在正常上皮细胞中高度表达,特别是在肠道、肝脏和肾脏中,因此可以说是 TKI 与其他 OCT 底物相互作用的相关位点。此外,OCT 通常在癌细胞中受到抑制,可能导致癌细胞对 TKI 产生耐药性。本文回顾了体外和体内报道的 OCT 与已批准和正在开发的 TKI 的相互作用,并批判性地讨论了其潜在的临床影响。