具有长寿命相干性的量子态对于量子计算、模拟和计量学至关重要。在单重态振转基态中制备的超冷分子的核自旋态是编码和存储量子信息的绝佳候选。然而,重要的是要了解这些量子比特的所有退相干源,然后消除它们,以达到尽可能长的相干时间。在这里,我们使用高分辨率拉姆齐光谱法全面表征了光学捕获的 RbCs 分子超冷气体中存储量子比特退相干的主要机制。在详细了解分子超精细结构的指导下,我们将磁场调整到一对超精细状态具有相同磁矩的位置。这些状态形成一个量子比特,它对磁场的变化不敏感。我们的实验揭示了状态之间微妙的微分张量光移,这是由旋转状态的弱混合引起的。我们演示了如何通过将线性偏振陷阱光和施加的磁场之间的角度设置为魔角反余弦(1 / √
摘要 量子信息平台在多体纠缠控制和量子纠错实现方面取得了巨大进展,但在同一装置中实现这两项任务仍然是一个挑战。本文,我们提出将两种超冷原子混合作为具有长距离纠缠门的通用量子计算平台,同时为量子纠错提供天然候选方案。在提出的装置中,一种原子实现长度可调的局部集体自旋,这构成了信息的基本单位。第二种原子产生声子激发,用于纠缠集体自旋。最后,我们讨论了有限维版本的 Gottesman–Kitaev–Preskill 代码,以保护集体自旋中编码的量子信息,为在超冷原子系统中实现通用容错量子计算开辟了可能性。
脱水苹果(Apple)这样的加工农业产品的质量与新鲜收获产品的质量和种类相关,并与整个农业供应链中的浪费减少有关。为此,冷藏管理对于避免或减轻存储在冷藏系统中的新鲜产品的质量衰减很重要。本文通过选择生产商的选择以及管理冷藏量来探讨了两个阶段随机编程模型的好处,以使质量降低并保证维持质量。在案例研究中介绍了一项具有农业综合企业公司的真实数据的案例研究,以说明和评估随机方法的适用性。确定性以及系统中苹果的购买成本是通过历史数据产生的情况来表示的。追索行动包括购买额外的水果和租用额外的冷店来满足需求。基于不同的情况,随机解决方案的值表明,建模和解决所提出的随机模型平均成本降低约为6.4%。此外,完美信息的预期价值表明,使用主动策略可以将成本降低多达9%。这些结果确保了该模型在收获季节和在收获季节进行计划和重新培训的实践中的适用性,因为在滚动范围内揭示了不确定性。
•通过无线电跟踪对航天器的轨道测定有助于测量天体的重力。•确定行星的内部组成(包括月亮)。•非重力力限制了重力恢复。•AI在板上航天器可以用作理想的测试质量,以消除此类干扰。•更好的行星科学(参见bepicolombo)
定量打击乐诊断(QPD)是最近使用PerientoMeter®仪器(Curmetrics LLC,Los Angeles,CA)形成的最近开发的非破坏性测试(NDT)方法。这种测试方式已用于检测和定量分析整体迁移率以及细节缺陷的存在,例如与牙齿[1]和牙科植入物相关的裂纹[2,3]。QPD的有效性也已被证明可以检测到层压板结构中的弱“亲吻”键[4,5]。QPD测试系统由一个探针组成,该探针包含一个被启用的力传感器,该探针被启用以敲击规格。在探针对试样的打击乐后,杆中的压电传感器记录了力时间数据。这种相对较低的撞击会在标本中产生最大应力,而这种应力是无损的。在标本的特征上,每种打击乐的实力时间验证是在杆与试样接触的0.2 E 0.4 ms上记录的。与打击乐探针相连的计算机中的软件确定了每次进行测量时测量的力与10个打击乐器的时间返回到杆的机械能[4 E 6]。图1显示了当前QPD测试系统的示意图。归一化能量返回(NER),即将机械能返回到杆撞击前的杆的动能,作为QPD测试结果,将其绘制在撞击前的杆的动能。返回的机械能被定义为将力平方除以测量该力的打击乐杆中传感器的动态刚度。ner和时间可用于确定损失系数,一个阻尼参数,显示结构中的总能量耗散以及正常拟合误差(NFE),该参数表明裂纹的存在和严重程度和其他缺陷缺陷[1 E 4,6 E 9]。NER的较低振幅可以表明由于严重的缺陷或结构中有较高数量的特定缺陷(例如孔隙率)而导致结构的能量更多。
背景适当存储和处理疫苗对于保持其最佳效力至关重要。否则可能会损害疫苗的功效,浪费疫苗和重新接种的数千美元,并可能使容易受到感染的人群。世界卫生组织(WHO)估计,由于与温度控制,物流和运输条件有关的问题,每年可能会浪费超过50%的疫苗疫苗[1]。随着疫苗在全球范围内被推出,目的是结束SARS-COV-2危机,了解疫苗管理系统的标准,并选择合适的冰柜以储存疫苗变得很重要。
抽象原子干涉仪在过去的三十年中已经开发为研究重力的新功能工具。它们用于测量重力加速度,重力梯度和重力曲率曲率,以确定在显微镜距离处的重力研究,以测试重力在显微镜距离处的重力原理,以测试重力原理,以探测一般性和量化性的量化量和量化性的量化性,以探测量化的量化和量化性的量化性,以探测量化性的量化和量化性的量化性,以量化量化和量化性的量化性,以量化量化性,以量化量化性,以量化量化性和量化性。暗能量,并被提出为观察引力波的新探测器。在这里,我描述了过去和正在进行的实验,对我认为这是该领域的主要前景以及寻找新物理学的潜力。
图1研究设计。使用二糖(蔗糖和松糖)作为冷冻治疗剂研究了基于冷冻干燥的基于CRIPEC CROPEC的核心链接聚合物胶束(CCPM)。使用差异扫描色色(DSC)确定了含有CPC634(即临床阶段的Docetaxel-CCPM)水溶液的玻璃过渡温度(T g),以及冷冻保护剂,以优化温度设置,并避免在冷冻过程中进行蛋糕塌陷。使用温度传感器和Pirani仪表进行冷冻干燥的试验量表架冰冻干器,并确定了最佳设置。接下来,进行了对冷冻干燥的蛋糕和重构配方的系统分析,评估了诸如水分含量,重建时间,大小,PDI,传输电子显微镜(TEM),药物保留和释放动力学等关键质量属性。这些结果证实了生成冻干的CCPM公式进行临床评估和商业应用的可行性
摘要对运输有许多限制,这些限制会减少或禁止使用柴油机来喂养电船的能源需求,尤其是在港口中。因此,使用岸电系统(SPS)以及可再生能源和能源存储系统(ESS)可以导致许多环境利益,而船只在港口泊位。在这项研究中,提出了船上混合动力系统(HPS),包括柴油机,太阳能光伏面板(PV),ESS和Cold-Ironing(CI)设施(CI),用于使用SPS来效率地提供船舶的电气需求。在这样的HPS上,太阳能生成的功率是根据导航途径准确估算的。通过真正的混合巡航船中的最佳能源调度,由于PV和ESS的用途,使用柴油发电机的使用被最小化。此外,使用CI服务而不是打开端口中的辅助柴油发电机会导致ESS的充电和放电时间增加3小时。此外,即使在航行时间,CI服务的有效使用也会减少使用柴油发电机,从而减少排放并最大程度地减少提供船舶能源需求的成本。在不同案例研究中,HPS的总成本降低,不使用CI服务仅为1%至2%,而通过将CI设施添加到HPS中,这种减少约为6%至7%。此外,分析了提议的柴油机电-ESCI的经济特征,通过将CI设施添加到HPS中,并通过考虑考虑到目标日的安装成本的份额来降低日常成本的利益。
伯明翰大学可持续冷却中心,Nexleaf Analytics,巴塞尔可持续能源署和国际能源保护研究所的可持续能源。致谢此简报是由可持续能源为所有人(Seforall),伯明翰大学,Nexleaf Analytics,国际能源保护研究所和巴塞尔可持续能源署制作的。由托比·彼得斯(Toby Peters)教授(伯明翰大学),阿尔文·何塞(Alvin Jose)和本·哈特利(Ben Hartley)(Seforall)领导,由Shahrzad Yavari(Nexleaf Analytics),Thomas Motmans,Veronica Corno和Dimitris Karamitsos(Base),Sanjay Dube,Seief,Seef,Seef,Seef(我)和Brian Dean(sefor)和Brian Dean(Seef)和Brian dean(Seef),并得到了Shahrzad Yavari(Nexleaf Analytics)的重大贡献。根据Seforall Partners的分析请求,制作了此简报说明,并且没有经过同行审查的过程。由于对COVID-19反应的背景下的疫苗冷链问题的考虑增加,因此公开共享。以这种格式提供,以支持决策者和开发从业人员,并进行更新和修订。这项工作中表达的发现,解释和结论并不一定反映出Seforall,其行政委员会或其捐助者的观点。seforall不能保证本工作中包含的数据的准确性。Seforall感谢Kigali冷却效率计划,瑞士开发与合作局以及使本报告成为可能的儿童投资基金会提供的财务和技术援助。我们还感谢奥地利发展局,查尔斯·斯图尔特·莫特基金会,宜家基金会,丹麦外交部,冰岛外交部提供的资金,以支持提供Seforall工作计划。有关Seforall支持者的完整列表,请访问我们的网站www.seforall.org。
