a13stract .-在油鸟(steatornis caripensis)中研究了线粒体-DNA(mtDNA)多态性。在委内瑞拉东北部和西北部研究的油鸟菌落中发现了十二个密切相关(p = 0.06至0.35%)mtDNA单倍型。十个mtDNA克隆与祖先一个或两个突变步骤有关。在所研究的菌落中,女性介导的基因流量很高(NM> 1)。 由于高雌性介导的基因流量,未观察到mtDNA Composite单倍型之间的植物地理结构。 MTDNA分析的证据表明,委内瑞拉的油鸟弹出量已经经过瓶颈。 的结果似乎也表明,从瓜恰罗洞穴到马塔德芒果地区的洞穴的年度后迁移迁移主要涉及繁殖成年人,而少年则从瓜萨罗洞(Guacharo Cave)分散到Mata de Mango Cave系统更长的时间。 1993年8月3日收到,1993年11月15日接受。女性介导的基因流量很高(NM> 1)。由于高雌性介导的基因流量,未观察到mtDNA Composite单倍型之间的植物地理结构。MTDNA分析的证据表明,委内瑞拉的油鸟弹出量已经经过瓶颈。的结果似乎也表明,从瓜恰罗洞穴到马塔德芒果地区的洞穴的年度后迁移迁移主要涉及繁殖成年人,而少年则从瓜萨罗洞(Guacharo Cave)分散到Mata de Mango Cave系统更长的时间。1993年8月3日收到,1993年11月15日接受。
使用Nebuilder HIFI HIFI DNA组装大师组合(NEB#E2621),Geneart Gibson组装混合物(Thermo Fisher#A46627)和Fifusion Snap组装组合(TAKARBLEBLBLEBLEBLBLEBLEBLEM)(TAKARE MIX)(TAKARA)(TAKARE MIX)(takARe Mix77),使用NEBUILDER HIFI HIFI HIFI GASSINBLY MIX(NEB#E2621),使用线性化载体(30 ng CRISPR核酸酶报告基因DNA)组装。在50°C下进行60分钟或15分钟进行组装反应。2μL组装的混合物被转化为NEB 5-Alpha胜任的大肠杆菌NEB#C2987)。通过PCR进一步筛选20个菌落,以确认插入物的存在。超过95%的从Nebuilder Hifi和Geneart Gibson组装反应中测试的菌落中包含适当的插入物,尽管Geneart Gibson组装产生的菌落较少。融合式快照没有产生任何成功的菌落。nebuilder Hifi DNA组装主混合均优于Geneart Gibson组装和融合式快照组件。
摘要:创建转基因微生物的“无标记”策略避免了潜在的抗生素抗性基因向其他微生物传播的问题。已经建立的策略,用于设计绿色Microalga衣原体的叶绿体基因组(= plastome)Reinhardtii,涉及使用在钥匙光合作用基因中携带质体突变的受体菌株恢复光合作用功能。在最小培养基上进行转化菌落的选择,使得只有在转基因DNA上进行的野生型拷贝代替突变基因的细胞才能具有光营养的生长。然而,由于使用有限的光敏性表型的突变株,这种方法可能会遭受效率问题,而在最小培养基上的生长缓慢以及未转换的细胞草坪的缓慢倒退。此外,这种光营养的救援往往依靠现有的突变体,这些突变体不一定是转化和靶向转基因插入的理想的:携带点突变的突变体可以轻易恢复,而那些没有删除的突变体不扩展到预期的转基因插入部位,这会引起缺乏过境的救援线的群体,从而引起了缺乏过境的线索。为了改善和加速C. renhardtii的转换管道,我们创建了一个新颖的受体线Hnt6,该系列在PSAA的外显子3中携带了工程删除,该删除编码了光学系统I(PSI)的核心亚基之一。我们使用荧光素酶报道器演示了HNT6的应用。这种PSI突变体是高度光敏的,可以通过在含乙酸乙酸酯的培养基上选择轻耐性,而不是在最小培养基上的光营养生长来更快地恢复转化菌落。缺失延伸到PSAA-3上游的位点,该位点是用于转基因插入的中性基因座,从而确保所有回收的菌落都是包含转基因的转化体。
摘要细菌生长培养基的高成本可能导致在微生物学领域的实践或研究过程中遇到障碍。日期棕榈(Phoenix dactylifera L.)是在阿拉伯半岛,北非和中东生长的最古老的水果植物。日期是高能量食品的来源,糖含量为72%-88%。进行了这项研究,以测试枣棕榈粉种植大肠杆菌和蜡状细菌作为替代Na培养基的替代培养基的能力。在这项研究中,使用浓度为1 g,2 g,4 g,6 g,8 g的方法实验室,带有三个重复。这项研究的结果是,大肠杆菌细菌的菌落数量超过了蜡状芽孢杆菌的菌落数量,即浓度介质8 gr上的54 x 10 5 cfu/g。与NA培养基相比,日期棕榈粉介质可以用作细菌的廉价替代培养基。关键字:蜡状芽孢杆菌,大肠杆菌,替代媒体,日期
在空气中以低温和低压的发光血浆在空气中处理的抽象自来水的刺激或抑制所选微生物的生长通常是人体器官的刺激或抑制。通过估计其菌落的光密度来监测所选微生物的生长。从实验开始12小时后,在研究中加速了所有研究中的所有微生物的时间的相当线性生长。菌落对生长的刺激约为20%。在整个观察期间,均无法注意到尼日尔曲霉,白色念珠菌,脂溶剂念珠菌和粪肠球菌的菌落的刺激和抑制。血浆处理的水对分枝杆菌的生长没有影响。独立于测试的水,结核分枝杆菌在实验的第14天开始增殖,9天后,M. intercellulare和M. kansai,并且可以在3天后观察到Fortuitos的生长。
图 1 RolR 诱变、选择和半自动化高通量筛选工作流程。a. 全构象的 RolR 二聚体(PDB:3AQT),以及配体结合口袋的结构,其中残基 D149 为黑色,间苯二酚为青色,5Å 内选择用于诱变的 19 个残基为橙色,5Å 和 8Å 之间的残基为紫色。b. 组合活性位点饱和度测试 (CAST) 的笛卡尔结合口袋图。c. 六个氨基酸组组成了要用于诱变的 19 个残基。d. 生物传感器 TetA 双重选择的原理,使用 NiCl 2 对转录抑制能力进行负向选择,使用四环素对目标配体进行正向选择。e. 半自动化高通量筛选。在第 1 天,为每个候选分子挑选约 500 个菌落。第二天,使用声学液体处理器将 IPTG 和小分子分配到 384 孔板中。生长的菌落被稀释并分配到 384 个孔板中,使用液体处理工作站测试传感器的不同状态。第三天,荧光
12.3标识和a。对来自SDA板的TSA确认和乳糖 - 苯酚棉蓝色(LPCB)染色的代表性菌落进行了克染色。污染物b。通过对一般和/或选择性培养基进行条纹隔离来进行推定识别。如果试图识别出更挑剔的微生物的存在,请使用特定的生长培养基和孵化条件。
摘要:先前已使用基于CRISPR的诱变方法获得了厌氧甲基菌质细菌中的靶向突变。在这项研究中,将来自Callanderi的RELB家庭毒素放置在甲型苯乙烯敏感启动子的控制之下,形成可诱导的反选择系统。该诱导系统与非复制性整合诱变载体相结合,以在limosum b2的Eubacterium B2中创建精确的基因缺失。这项研究中针对的基因是编码组氨酸生物合成基因HISI,甲醇甲醇转移酶和类cor我蛋白MTAA和MTAC的基因,以及编码MTTB-氨基甲基转移酶的MTCB,先前显示出MTTB-FAMILY甲基转移酶。HISI内的有针对性的缺失带来了预期的组氨酸成可营养,MTAA和MTAC的缺失都废除了甲醇的自养生长。MTCB的缺失被证明是消除了Limosum在L-肉碱上的生长。 在隔离转化菌落的初始选择步骤之后,仅需要一个单个诱导步骤才能获得所需靶标的突变菌落。 可诱导的反选择标记和非复制综合质粒的组合可以快速地编辑大肠杆菌。MTCB的缺失被证明是消除了Limosum在L-肉碱上的生长。在隔离转化菌落的初始选择步骤之后,仅需要一个单个诱导步骤才能获得所需靶标的突变菌落。可诱导的反选择标记和非复制综合质粒的组合可以快速地编辑大肠杆菌。
