1.00850Chromocult®Coliform琼脂ES用于食品和动物饲料中大肠菌菌和大肠杆菌的检测。e是提高选择性的,因为食品基质中的预期细菌背景菌群较高,例如生碎牛肉,生碎鸡肉和生牛奶(经AOAC验证)。44657 ECD杯琼脂此大肠杆菌直接琼脂中的胆汁盐混合物广泛抑制伴随植物群的非渗透性肠道。荧光底物杯子的裂解和阳性测试证明了大肠杆菌的存在。1.10620Fluorocult®LMX肉汤,用于通过发色和荧光过程同时检测水,食物和乳制品中大肠菌细菌和大肠杆菌。81938 Hicrome™大肠菌琼脂推荐用于同时检测水和食物样品中的大肠杆菌和总大肠菌群。发色混合物含有两个发色底物,鲑鱼 - 盐和X-葡萄糖苷。大肠菌群产生的酶β-D-半乳糖苷酶裂解了鲑鱼,从而导致鲑鱼变成大肠菌群的红色。大肠杆菌裂解X-葡萄糖醛酸的酶β-D-葡萄糖醛酸苷酶(深蓝色至紫色的菌落与两种活性结合使用)。70722 Hicrome™大肠杆菌琼脂B hicrome E. Coli琼脂B用于食品中大肠杆菌的检测和枚举,而无需在膜过滤器上或通过吲哚试剂进行进一步确认。大多数大肠杆菌菌株可以通过存在高度特异性大肠杆菌的酶葡萄糖醛酸酶来区分其他大肠菌菌。大肠杆菌细胞吸收X-葡萄糖醛酸酯,细胞内葡萄糖醛酸酶分裂发色团和葡萄糖醛酸苷之间的键。释放的发色团给出了菌落的蓝色。73009 Hicrome™ECC琼脂Hicrome ECC琼脂是一种差异培养基,用于推定大肠杆菌和其他大肠菌群中的食品和环境样品中的其他大肠菌群。发色混合物包含两个染色体,作为X-葡萄糖醛酸和鲑鱼 - 盐。X-葡萄糖醛酸是由大肠杆菌产生的酶β-葡萄糖醛酸酶裂解的。鲑鱼 - 盐 - 由大多数大肠菌群(包括大肠杆菌)产生的酶半乳糖苷酶裂解。大肠杆菌菌落的颜色:蓝色/紫色85927 Hicrome™ECC选择性琼脂hicrome ecc选择性琼脂是一种选择性(tergitol作为抑制剂)培养基,建议同时检测水和食品样品中的大肠杆菌和大肠杆菌。成分甚至有助于共同受伤的大肠菌群迅速生长。发色混合物包含两个发色底物,作为鲑鱼 - 果胶和X-glucuronide。大肠菌群产生的酶β-D-半乳糖苷酶裂解了鲑鱼,从而导致鲑鱼变成大肠菌群的红色。大肠杆菌裂解X-葡萄糖醛酸酶产生的酶β-D-葡萄糖醛酸苷酶。大肠杆菌由于鲑鱼和X-glucuronide的裂解而形成了深蓝色至紫色的有色菌落。
细菌、真菌、病毒、酵母和原生动物等微生物污染物引起了食品制造商的极大兴趣和担忧,因为它们可能存在食物中毒或食物腐败的风险(Maruthamuthu 等人,2020 年)(Talo,2019 年)。对数字微生物数据的需求不断增长,为微生物学家和实验室专业人员提供了轻松检测微生物的机会(Egli 等人,2020 年)。这种变化可以个性化诊断和治疗,提高数字数据质量,并降低医疗成本。传统的基于培养的微生物检测方法非常耗时,而数字成像因其快速的方法而备受关注。数字微生物学还有可能对公共卫生和病原体监测产生重大影响。为了实现数字化,微生物实验室必须发展数字医学和食品分析方面的专业知识,包括数据处理、感知和基础设施(Soni 等人,2022 年)。近年来,计算机视觉、人工智能 (AI) 和机器学习 (ML) 等在大量标记数据上进行训练的方法越来越多地用于自动分析医学图像和微生物样本 (Goodswen et al., 2021)。这些方法可用于识别四种不同类型的微生物:细菌、藻类、原生动物和真菌 (Rani et al., 2022)。卷积神经网络和 ResNet-50 等模型可用于确定微生物样本的类别 (Majchrowska et al., 2021) (Rani et al., 2022) (Talo, 2019)。语义分割是一种计算机视觉方法,用于分析微生物样本的图像,当需要根据语义含义精确确定图像的不同区域时,为图像中的每个像素分配一个类标签 (Zawadzki et al., 2021)。 Faster R-CNN 和 Cascade R-CNN 等模型可用于计数微生物样本图像中的细菌菌落,这些模型可以检测单个物体并确定其类别。实例分割方法旨在通过区分图像中单个细菌菌落的不同实例并将每个像素分配给唯一的菌落来提供对图像的详细理解(Zawadzki 等人,2021 年)。Meta 公司开发和训练的 Segment Anything Model (SAM) 用于图像分割(实例分割)(Kirillov 等人,2023 年)。该模型使用超过 10 亿个掩模对 1100 万张图像进行了训练。SAM 模型具有零样本泛化的可能性,因此无需额外训练即可用于图像中对象的分割。SAM 模型可以分析来自广泛领域的图像,包括生物医学、农业、自动驾驶等。2. 方法
摘要 回顾了 γ -TiAl 合金的高周疲劳 (HCF) 性能,特别是关于近阈值循环载荷范围内的变形机制。通过检查层状取向和厚度对 HCF 阈值的影响,除了更传统的微观结构考虑因素(例如晶粒尺寸或层状群的体积分数)之外,还评估了改善 HCF 的 γ -TiAl 微观结构的因素。最后,调查了实验方法和加载策略,以确定改进 γ - TiAl 合金 HCF 测试的技术。在此,我们考虑了不同方法的保守性,以及以合适的分辨率测量层状 γ -TiAl 微观结构在 HCF 下的局部机械行为的可能性。
斯蒂芬·普拉特(Stephen Pratt)研究了无领导,分散群体,尤其是社会昆虫殖民地的复杂社会行为的出现。他和他的实验室成员使用实验,数学模型和计算机模拟,以了解允许蚂蚁和蜜蜂殖民地充当集体智能的行为规则和通信网络。受单个生物体和殖民地“超生物”之间的类比的启发,他们运用了心理学和经济学中的许多思想来了解群体认知。Pratt教授还与工程师合作,将课程从社交动物转化为机器人群和其他人类设计的系统,并开发创新的工具来分析行为。
摘要 综述了 γ -TiAl 合金的高周疲劳 (HCF) 性能,特别是在近阈值循环载荷范围内的变形机制。通过研究层状取向和厚度对 HCF 阈值的影响,除了更传统的微观结构考虑因素(例如晶粒尺寸或层状群的体积分数)之外,还评估了改善 HCF 的 γ -TiAl 微观结构的因素。最后,调查了实验方法和加载策略,以确定改进 γ - TiAl 合金 HCF 测试的技术。在此,我们既考虑了不同方法的保守性,也考虑了以合适的分辨率测量层状 γ -TiAl 微观结构在 HCF 下的局部力学行为的可能性。
在整个殖民时期,英国定居者、法国殖民者和美洲原住民在试图扩张和/或保卫其领土时不断发生冲突。进攻引发攻击,有时甚至导致战争。在许多情况下,这种边境战争受到时间、领土和人员的限制。然而,1754 年,俄亥俄河岔口附近的边境冲突升级为英国殖民者所说的法国印第安人战争。5 月 28 日,乔治·华盛顿中校的弗吉尼亚部队和印第安人盟友袭击了一支法国支队。法国军队随后从杜肯堡出发回敬——7 月 4 日在尼塞西蒂堡击败了华盛顿。当弗吉尼亚进行军事行动时,来自七个北方殖民地的代表在纽约州奥尔巴尼会面,商讨国防事务并重建与易洛魁人的友好关系。到 7 月 9 日,他们在一定程度上控制了后者。当代表们决定为所有殖民地制定一个联合计划以确保更好的共同防御并在扩张时保护边境时,前者变得更加复杂。本杰明·富兰克林曾提倡这种联合,代表们主要选择按照他的计划行事(尽管他们也采纳了其他提交的计划中的想法)。最终成果最终被帝国政府和殖民地政府忽视或拒绝,但它为后来的联合计划提供了范例和基础。Stephen L. Schechter 编辑,《共和国之根:美国建国文件解读》(威斯康星州麦迪逊:麦迪逊出版社,1990 年),第 114-117 页。经许可使用。[方括号中出现的编辑插入内容来自 Schechter 的版本——编辑]
图 1. APPEAL 克隆。A、从载体 pYJA5 中去除氨苄青霉素抗性基因 (AmpR)。sgRNA1-4 和甲氧苄啶抗性基因 (TmpR) 与三个不同的 PCR 扩增子融合。所有元件均经过 Gibson 组装以形成 4sgRNA-pYJA5 质粒,并用甲氧苄啶筛选转化子。描绘了 4sgRNA-pYJA5 全质粒和 4sgRNA 盒的详细结构。LTR,长末端重复;Ψ,包装信号序列;PB,piggyBac 转座子元件;PuroR,嘌呤霉素抗性元件;hU6、mU6、hH1 和 h7SK 是普遍表达的 RNA 聚合酶 III 启动子;sg,sgRNA。 B、转化大肠杆菌并进行甲氧苄啶筛选后,代表性 pYJA5 限制性片段、3 片段 PCR 和 APPEAL 克隆产物的单菌落 PCR。Bbs I 消化 pYJA5 产生约 1 千碱基 (kb) 的 AmpR 元件条带和约 7.6 kb 的线性化载体条带(左)。使用相应的 sgRNA 引物进行 PCR 后,三个扩增子在琼脂糖凝胶上分别显示预期的 761、360 和 422 bp 大小(中)。使用转化细菌平板中 APPEAL 克隆产物 4sgRNA 盒两侧的引物进行单菌落 PCR 始终产生预期大小(2.2 kb,右)。 C ,8 个具有不同 4sgRNA 序列的独立 APPEAL 实验中正确、重组和突变 4sgRNA 质粒的百分比(每个实验测试 ≥22 个菌落)。D ,四个 APPEAL 实验中正确、重组和突变 4sgRNA 质粒的百分比。每个点代表一个由八个菌落组成的独立生物复制品(n=24;平均值 ± SEM)。E ,高通量格式的 APPEAL 克隆时间线(h:小时;d:天)。
Hicrome™通用差异介质是根据Pezzlo(1),Wilkie等人(2),Friedman等人(3),Murray等人(4),Soriano和Ponte(5)和Ponte(5)和Merlino等(6)进行的作品的修饰。Hicrome™通用差异培养基,以鉴定来自临床和非临床标本的微生物,其中该培养基具有更广泛的应用作为一般营养琼脂,用于隔离各种微生物。这种培养基有助于鉴定一些革兰氏阳性细菌和革兰氏阴性细菌,基于它们所表现出的不同菌落颜色。这些颜色是由于属或物种特异性酶与培养基中掺入的两个发色底物的反应而形成的。肠球菌,大肠杆菌和大肠菌群产生酶,这些酶特异性地切割了这些发色底物,从而具有特征性的独特菌落颜色。蛋白质是苯丙氨酸和色氨酸等氨基酸的来源,这些氨基酸有助于指示色氨酸脱氨酶活性,从而促进了蛋白质物种,摩根菌和普罗维伦西亚物种的鉴定。通过肠球菌拥有的β-葡萄糖苷酶裂解了一种成色的底物,从而形成了蓝色的绿色菌落。大肠杆菌具有酶ß-半乳糖苷酶,该酶特异性切割了其他发色底物,从而形成了紫色的菌落。大肠杆菌可以通过进行吲哚测试来区分和与其他类似的颜色菌落进行区分。大肠菌群裂解了形成蓝色至紫色菌落的两个成色基底物。由于色氨酸脱氨酶活性,Proteus,Morganella和Providencia物种的菌落显得棕色。肽和胰蛋白蛋白酶提供氮,碳质化合物,必需的生长营养素,还可以作为氨基酸的来源。
20 世纪 60 年代是一个充满乐观和进步的时代,当时人们对一个更加美好的新世界和进步的国际思想抱有更大的希望。拥有丰富自然资源的殖民地正在成为国家。合作和共享的习俗似乎得到了认真的推行。矛盾的是,20 世纪 70 年代逐渐陷入了反动和孤立的情绪,与此同时,一系列联合国会议为在重大问题上加强合作带来了希望。1972 年联合国人类环境会议将工业化国家和发展中国家聚集在一起,划定了人类家庭享有健康和生产性环境的“权利”。随后又举行了一系列这样的会议:关于人民获得充足食物、舒适住房、安全饮用水、选择家庭规模的手段的权利。
