基本成像操作:1. 色域映射和外观操作 2. 偏好操作 关键色彩保真度要求:1. 过程特性 2. 将源设备独立表示转换为目标设备独立表示 图像状态影响:1. 根据颜色渲染条件更改或“嵌套”图像状态 图像系统域:1. 标准格式接口 2. 标准介质相关比色法 3. 专有感知方法
颜色翻译和分析仪(CT&A)帮助手册©2004-2025 Danny Pascale保留所有权利。未经出版商的书面许可,不得以任何形式或任何方式复制任何形式或任何方式 - 图形,电子或机械,包括影印,记录,录音,录音或信息存储和检索系统。本文档中提到的产品可能是各个所有者的商标和/或注册商标。虽然在准备本文档时都采取了每项预防措施,但出版商和作者对错误或遗漏的责任不承担任何责任,或者由于使用本文档中包含的信息或可能随附的程序和源代码而造成的损害。在任何情况下,出版商和作者均不应对本文件直接或间接造成或据称造成或据称造成的任何其他商业损失均不承担任何责任。于2025年1月在蒙特利尔 /魁北克 /加拿大出版。
凭借传输和处理量子信息的能力,大规模量子网络将实现一系列全新的应用,从量子通信到分布式传感、计量和计算。本期观点回顾了量子网络节点和金刚石色心作为合适节点候选者的要求。我们简要概述了采用金刚石色心的最先进的量子网络实验,并讨论了未来的研究方向,重点关注分配和存储纠缠态的量子比特的控制和相干性,以及高效的自旋-光子接口。我们讨论了将金刚石色心与其他光子材料相结合的大规模集成设备的路线,并展望了未来量子网络协议的实际实现和应用。
©2023 Wiley -VCH GmbH。保留所有权利。这是以下文章的同行评审版本:Isik,A。T.,Shabani,F.,Isik,F.,Kumar,S.,Delikanli,S。&Demir,H。V.(2023)。同时产生的双色放大自发发射,并从胶体量子井中获得培养基,在他们自己的分层波导和空腔中获得培养基。激光和光子学评论,该评论以https://doi.org/10.1002/lpor.202300091发表。本文可以根据Wiley使用自构货币版本的条款和条件来将其用于非商业目的。
显示技术:2.8英寸320x240分辨率,IPS全视角LCD屏幕带有电阻触摸控制方法:默认数字键盘输入和旋钮调整,还支持第三方触摸屏屏幕固件*频率范围:
本文的主要目的是将量子测量理论的一些重要元素系统地整合到论文 [6, 3, 7, 5, 4] 中提出的色彩感知数学框架中。该框架描述了一种量子相对论色彩感知理论,该理论基于与 CIE(国际照明委员会)开发的经典比色法中假设的范式完全不同的范式,本质上可以将其归结为物理色彩刺激空间的同色异谱还原,例如,请参阅 [32, 11, 16] 中对该方法的数学导向描述。由于在同色异谱还原过程中光刺激和感知色彩之间的直接联系会丢失,并且人类视觉系统的精细化将这两个概念进一步分开,因此我们决定不考虑物理色彩刺激,而仅基于众所周知的色彩感知经验证据来建立我们的模型。正如我们稍后将详细介绍的那样,这一策略已被重要的科学家所采用。如果不参考实验环境和观察仪器,就无法研究这些经验色彩感知定律,正如逻辑学家 B. Russell 在 [45] 中一针见血地指出的那样:“在日常生活中,当我们谈论桌子的颜色时,我们只指在通常的光线条件下,从普通角度看桌子对普通观察者来说似乎具有的那种颜色。但在其他条件下出现的其他颜色也同样有权被视为真实的;因此,为了避免偏袒,我们不得不否认桌子本身具有任何一种特定的颜色。”理解依赖于实验环境和观察条件的经验证据的需要是引发数学形式化的动机之一
摘要:牙体预备是牙体修复的基石,需要精确的准备和使用合适的旋转器械。牙钻是牙体预备过程中不可或缺的一部分,其设计、材料成分和应用都发生了重大变化。本文回顾了牙钻的类型、分类和应用,强调了它们的颜色编码识别系统。本文旨在全面了解这些工具,帮助临床医生优化其使用,从而有效、高效地进行牙体预备。I. 引言牙钻是牙体预备必不可少的旋转切割器械。它们有助于进行窝洞准备、牙冠塑形、修复体修整等。牙钻的适当选择会显著影响手术结果的质量和效率。了解牙钻设计、材料和颜色编码的细微差别对牙科专业人员至关重要。本文探讨了不同类型的牙钻、它们的设计变化、材料特性以及有助于识别的颜色编码系统。此外,本文还讨论了这些牙钻在临床实践中的应用。 1. 牙科车针的分类 牙科车针根据材料、柄类型、形状和粒度进行分类。 1.1 材料成分 1. 碳化钨车针: • 高刚性和锋利度。 • 非常适合切割金属和牙齿结构。 • 耐用且耐磨。 2. 金刚石车针: • 由涂有金刚石颗粒的钢柄组成。 • 用于精确切割和精加工。 • 有各种粒度可供选择。
你有没有想过孔雀羽毛的鲜艳蓝色或甲虫身上闪闪发光的金属几丁质?这些自然奇观就是结构色的例子——微观结构产生鲜艳持久色调的现象。受到这些奇迹的启发,日本的一个研究小组一直在探索结构色。他们早期的工作发现,用黑色素颗粒制备结构色材料模仿了孔雀羽毛的着色机制。在此基础上,该团队着手开发一种涂层材料,利用黑色素颗粒捕捉结构色的光彩,即使从不同角度观看也能产生非彩虹色。研究小组包括日本千叶大学理工学院的 Michinari Kohri 教授和 Yui Maejima 女士,他们与武田胶体技术咨询有限公司的 Shin-ichi Takeda 博士和国家材料科学研究所的 Hiroshi Fudouzi 博士合作。他们的研究成果于 2024 年 12 月 18 日发表在《大分子反应工程》上。Kohri 博士描述了他进行这项研究的动机,“多年来,我们一直在研究受自然生物启发的基于黑色素的结构色材料。我们的动机是通过开发快速创造结构色并添加防水等功能特性的方法,使这些材料更加实用。” 为了实现这一目标,该团队准备了三种不同直径的聚苯乙烯颗粒。然后,他们添加了一层聚多巴胺(改性黑色素颗粒),然后通过迈克尔加成反应添加具有疏水性的具有 18 个碳原子的烷基(十八烷基)。在该反应中,带负电荷的化学基团添加到 α,β-不饱和羰基化合物中,以引入增强防水性的疏水基团。这是在不依赖疏水性但会引起重大环境问题的氟化合物的情况下实现的。使用时域核磁共振 (TD-NMR) 方法确认了颗粒的疏水性。处理完颗粒后,它们会分散在己烷中,从而可以快速高效地应用于玻璃和三聚氰胺层压板等基材上。干燥后,涂层的接触角超过 160 度,色调单一,表面自洁,呈现出荷叶效应,水滴在材料上形成水珠并滚落,不会留下残留物。研究发现,用十八烷基涂层获得的疏水性黑色素颗粒的疏水性几乎与用氟化合物涂层的颗粒相同,而氟化合物具有高疏水性。第一作者 Maejima 女士强调了这项研究的独特发现,她指出,“我们发现,通过将粒子表面的疏水性与粒子的分级组装结构相结合,可以实现超疏水结构彩色涂层,而这一切只需几分钟即可完成。”该团队专注于创建一种简单且可扩展的方法,确保涂层可以在几分钟内完成,而无需复杂的设备或工艺。前岛女士评论了他们发现的实用性:“这项技术有可能成为下一代涂层材料,非常适合墙纸或户外表面等应用,而无需依赖会随着时间而褪色的颜料。它的简单性和效率使其非常适合工业用途。”
结果:通过结合光谱、色谱和质谱分析不同物种的羽毛,我们发现了鹦鹉从黄色到红色颜色变化的共同化学基础。我们发现鹦鹉黄霉素“端基”的氧化状态在颜色变化中起着关键作用,颜色从黄色到红色的调整与鹦鹉黄霉素分子中羧基与醛基端基的比例相关;红色羽毛含有大量的醛基鹦鹉黄霉素,而黄色和绿色羽毛的羧基鹦鹉黄霉素含量较高。为了探索这些颜色差异的遗传基础,我们研究了暗色鹦鹉,它在野生种群中有两种:黄色和红色。遗传图谱确定了一个与颜色变化相关的基因组区域,其中包含 ALDH3A2 基因下游非编码区域中的候选点突变,该基因编码一种催化氧化的酶
本文所包含的信息仅出于信息目的提供,即用户自己评估适当使用此类信息的情况。虽然本文包含的信息被认为是可靠的,但没有任何形式的陈述,担保或保证就其准确性,适用于特定申请的适用性或从此处获得的结果。lubrizol Advanced Materials,Inc。(“ Lubrizol”)无法保证与此信息相关的任何产品与其他物质或用户过程中如何执行的产品。由于在处理这些材料时商业上使用的方法,条件和设备的差异,因此对于信息/产品对于所披露的申请的适用性没有任何保证或保证。lubrizol不承担任何责任,用户对Lubrizol直接控制以外的任何材料的使用或处理承担所有风险和责任。lubrizol不做明示或暗示的保证,包括但不限于对特定目的的适销性或适合性的隐含保证。确定是否存在与侵犯专利侵犯任何组件的任何问题或与所提供信息有关的组件的组合有关的任何问题。本文中没有任何内容应作为许可,建议,也不应作为未经专利所有者许可的任何专利发明的诱因。©版权所有2014 Lubrizol Advanced Materials,Inc。