进行准确的亚季节预测仍然是科学界的挑战(White等人2022)。中期时间范围位于中期每日天气预报和季节性预测之间(Vitart等人,2017年)。为了改善季节前的前提,已经做出了巨大的努力来理解不同的过程,相互作用和可预测性的来源(Domeisen等人。,2022; Robertson&Vitart,2019年; White等。,2022)。中季可预测性与大气,海洋和土地过程有关(Robertson&Vitart,2019年)。亚季节范围最重要的预性能力来源如下:Madden-Julian振荡(Lau&Waliser,2011; Vitart等人,2017年),由于其对热带和外界全球天气的影响(Cassou,2008; Deflorio等人,2019年);土壤水分(Koster等人,2010年),因为这会影响较低的大气温度和局部预言(Domeisen等人,2022; Wei&Dirmeyer,2019年);雪覆盖(Lin&Wu,2011年),尤其是极地和中纬度地区(Penny等人,2019年);海洋条件(Woolnough等人,2007年),显示出在某些地区增强降水和温度预测的能力(Subramanian等人,2019年);以及对降水和温度的影响滞后的strato-everhere(Butler等人,2019年)。,2020年;纽曼等人。,2003年; Rashid等。,2011年; Vitart,2014年)。,2022; Mariotti等。改善亚季节预测还与模型物理的改善有关,通过纳入了地球系统的辅助过程和许多组成部分,例如海洋和海冰,以及在与前面提到的可预测性不同来源之间相互作用相关的初始条件下的不确定条件(Merryfield等。下午预测变得更加准确(Robertson&Vitart,2019年)。NWP的预测在过去几十年中有所改善(Magnusson&Källén,2013年)。NWP模型已从概率的方法转变为概率方法。的确,集合(概率)预测通过为预测变量产生一组概率来帮助捕捉大气混乱(Palmer,2000)。因此,一个概率的预测通过更大的结合预测提供了最有可能的情况和与之相关的不确定性,从而可以更自信地验证亚季节预测。由于上述所有努力,亚季节合奏预测已经展示了其潜在的,以提供有价值的预测和早期对重大气候和天气事件的警报(Domeisen等人,2018年; Robertson&Vitart,2019年)。这些
摘要背景:使用微生物组数据与主机基因组信息结合使用的复杂性状的分析和预测是一个最引起关注的话题。但是,仍然有许多问题要回答:微生物组对复杂性状预测的有用程度如何?微波性可靠的估计值吗?可以回收宿主基因组,微生物组和现象之间的潜在生物学联系吗?方法:在这里,我们通过(i)制定一种新型的模拟策略来解决这些问题,该策略使用真实的微生物组和基因型数据作为输入,以及(ii)使用方差 - 组件方法(贝叶斯复制的核心kernel hilbert space(RKHS)和贝叶斯变量选择方法(Bayes c)(贝叶斯),以量化contiper and centery centery andy型依次的变化。提出的模拟方法可以通过保留数据的分布性能的置换程序模仿微生物组和基因型数据之间的遗传联系。结果:使用奶牛的实际基因型和瘤胃微生物群的丰度,无论某些微生物群的丰度是否受宿主的直接遗传控制,微生物组数据都可以显着提高表型预测的准确性。此改进在逻辑上取决于微生物组随着时间的推移而稳定。总体而言,尽管通常高度高度的微生物群丰度分布,但随机效应线性方法对于方差构成估计似乎是可靠的。贝叶斯C的预测性能高,但对因果效应的数量比RKHS更敏感。贝叶斯的准确性部分取决于影响表型的微生物类群的数量。结论:我们得出的结论是,可以使用方差成分估计值来表征基因组微生物组 - 链接,但我们对识别影响微生物群的病变遗传效应的可能性不太乐观,而这些宿主遗传效应影响了微生物群的丰富度,而基因组 - 微生物组 - 菌群 - 基因组 - 型号可能需要更大的样本量。复制分析的R代码位于https://github。com/migue lpere zenci so/simub iome中。
尽管个性化学习的好处现在已经有充分的文献记载,但其在学校中的概括受到高层规模的挑战。诸如智能辅导系统(ITS)之类的教育技术可能有助于应对这一挑战并帮助教师和学生。最近,利用了一种利用好奇心驱动的学习模型的方法来构建其个性化练习序列。基于学习进度假设(LPH),这种方法包括提出学生练习,以最大程度地提高学习进度,并使用多武力的强盗机器学习技术逐渐识别。与人类专家设计的课程相比,与人类专家相比,在实地研究中以前显示了所产生的算法(ZPDE)在学习表现方面更有效。但是,有两个限制。首先,没有评估动机影响。第二,ZPDE算法并没有使学生能够表达选择。代理中的这种局限性与最初与建模好奇心驱动的学习有关的LPH理论不符。在这里,我们介绍了一个系统(ZCO),该系统(ZCO)结合了使用LP的自适应运动提议,并有可能使学生做出选择。这些选择的可能性涉及锻炼难度正交的维度,并且是许多现有教育技术的游戏化实例。我们首先表明,基于LP的个性化改善了学习绩效(再现和巩固先前的结果),同时产生积极而激励的学习经验。我们提出了一项广泛的现场研究(来自11所学校的265个7-8岁儿童,RCT设计),将基于LP的自动课程生成系统与手工设计的课程进行了比较,无论有没有自我选择。然后,我们表明,增加自我选择作为嬉戏的功能,触发了学习者的内在动机,并增强了基于LP的个性化的学习有效性。这样做,它加强了认真游戏中内在动机与表现进步之间的联系。相反,对于手工设计的线性路径,观察到了嬉戏特征的有害效果。因此,只有在课程个性化对学习者有效的情况下,由嬉戏的功能引起的内在动机才是有益的。由于在市场上可用的非适应性教育技术中使用了嬉戏的功能,因此值得关注的结果。
材料建模一直是一个具有挑战性的问题。此类建模中出现了许多复杂性,例如非线性材料行为、复杂物理和大变形,以及多物理现象。此外,材料通常会表现出丰富的厚度响应行为,这阻碍了使用经典简化方法,并且在使用经典模拟技术时需要极其精细的网格。模型简化技术似乎是减少计算时间的合适解决方案。许多应用和材料成型过程都受益于模型简化技术提供的优势,包括固体变形、传热和流体流动。此外,数据驱动建模的最新发展为材料建模开辟了新的可能性。事实上,使用数据建模对模拟进行校正或更新导致了所谓的“数字孪生”模型的形成,从而通过数据驱动建模改进了模拟。通过使用机器学习算法,也可以对当前模型不准确的材料进行数据驱动建模。因此,在材料制造过程和材料建模框架内有效构建数字孪生的问题如今已成为一个越来越受关注的话题。数字孪生技术的最新进展是使用实验结果来校正模拟,同时也在无法通过实验定义基本事实时将其变化纳入正在运行的模拟中。本研究主题讨论了模型简化技术、数据驱动建模和数字孪生技术的最新发展,以及它们在材料建模和材料成型过程中的应用。在 Victor Champaney 等人的论文中,作者解决了非平凡插值的问题,例如,当曲线中的临界点(例如弹塑性转变点)移动位置时就会出现这种问题。为了找到该问题的有效解决方案,本文展示了几种方法,结合了模型简化技术和代理建模。此外,还展示了通过为预测曲线提供统计界限来量化和传播不确定性的替代品。本文展示了几种应用,以经典材料力学问题为例。
将工业 4.0 技术和 KPI 可靠性相结合以实现供应链绩效的方法 Yousra El Kihel a、Anne Zouggar Amrani a、Yves Ducq a、Driss Ameguouz b、Ahmed lfakir ca 波尔多大学,CNRS,IMS,UMR 5218,33405 Talence,法国;b 实验室 TSI,Univ USMBA,Fes,摩洛哥;c 生产部,PSA,肯尼特拉,摩洛哥 电子邮件:yousra.el-kihel@u-bordeaux.fr、anne.zouggar@u-bordeaux.fr、yves.ducq@u-bordeaux.fr、driss.amegouz@usmba.ac.ma、ahmad.lfakir@mpsa.com 摘要:在国际化的背景下,供应链变得越来越复杂,需要做出大量决策。供应链 (SC) 绩效的建模和测量已得到研究人员的广泛关注,然而工业 4.0 时代新技术的出现正在改变环境,并隐性影响供应链管理的关键绩效指标 (KPI)。尽管存在多种模型,但考虑到 KPI 的重要性以及同时包含工业 4.0 技术,没有一种模型是专门针对供应链运营管理的。本文提出了一种研究方法,针对一个参考模型来掌握供应链状态,并识别决策,称为 GRAILOG,从中构建一组 KPI 来支持不同的决策。然后描述和演示了一种称为 PPTechIP 的方法,用于引导和建议公司进行与构建可靠 KPI 相关的工业 4.0 转型。PPTechIP 基于一组雷达,这些雷达基于 GRAILOG 模型,分为供应链的不同决策级别和功能。计算进步潜力并协助经理做出决策。拥抱工业 4.0 时代的 PSA(法国汽车制造商)被选中实施该模型。使用建议的方法,结果为 PSA 的控制指标提供了一些有趣的见解。大数据、增强现实和协作机器人引起了 PSA 的高度关注,并被判定为继续跟进的先行技术,而云计算则被判定为一种警示技术,必须谨慎考虑过度投资。关键词、供应链管理、关键绩效指标、工业 4.0、技术、汽车行业
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
开放存取本文采用知识共享署名-非商业性使用-禁止演绎 4.0 国际许可证,允许以任何媒体或格式进行任何非商业性使用、共享、分发和复制,只要您给予原作者及来源适当的信任、提供指向知识共享许可证的链接、并指明您是否修改了许可资料。根据此许可证,您无权共享源自本文或其中部分的改编资料。本文中的图像或其他第三方资料包含在文章的知识共享许可证中,除非资料的致谢中另有说明。如果资料未包含在文章的知识共享许可证中,且您的预期用途不被法定规定允许或超出了允许的用途,您需要直接从版权所有者处获得许可。要查看此许可证的副本,请访问 http://creativecommons.org/licenses/by-nc-nd/4.0/。
脑机接口不需要任何肌肉能力就能进行交流,因此被广泛研究用于帮助运动障碍患者。脑电图 (EEG) 作为一种低成本、轻量级的技术,是记录大脑活动产生的电位的常用方法 [1]。尽管 BCI 有着广泛的临床应用,但它却无法在实验室外使用。需要克服的主要挑战之一是受试者之间高度的差异性,在文献中称为“BCI 效率低下”现象,相当一部分用户即使经过几次训练后仍无法控制 BCI 设备。解决这个问题的有效方法之一是改进神经解码器 [2]。为此,研究得出了依赖于协方差矩阵的新特征,例如,对于 𝑇 信号样本的 EEG 信号 𝑋,𝐶𝑜𝑣 = 1 𝑇 −1 𝑋𝑋 ⊤,以及邻接矩阵。这些邻接矩阵是
在发表的文章中,有几个错误。代替“中国深圳深圳大学医学院”,官员4应该是“马歇尔生物医学工程实验室,中国深圳大学医学院生物医学工程学院,中国登陆大学”。代替“量子医学科学院,QUSSCOCICONT与技术研究所高级核医学科学系,日本Chiba,日本Chiba”,应为“ Quantum Science和Chiba,Chiba,Chiba,National Medical Scients,National Medical Scients,National Medical Scients,National Medical Scients of Accelerator and Medical Physicts of Accelerator and Bysical Physick。作者对这些错误表示歉意,并指出这不会以任何方式改变文章的科学结论。原始文章已更新。
b'Abstract本文讨论了将双重/伪证机器学习(DDML)与堆叠配对,这是一种模型平均方法,用于结合多个候选学习者,以估计结构参数。除了传统的堆叠外,我们还考虑了可用于DDML的两个堆叠变体:短堆栈利用DDML的交叉拟合步骤可大大减轻计算负担,并汇总堆叠量强制执行常见的堆叠权重,而不是交叉折叠。使用校准的模拟研究和两种估计引用和工资中性别差距的应用,我们表明,与基于单个预先选择的学习者的常见替代方法相比,堆叠的DDML对部分未知的功能形式更强大。我们提供实施建议的Stata和软件。JEL分类:C21,C26,C52,C55,J01,J08'