mzl(60)初级耐火(%)17 8次级抵抗(%)43 30 CD19-CD19阴性复发(%)27 0(0/13)中位数(0/13)中位数(月份)11.1未达到12个月的12个月71.7%在12个月(12个月)未达到12个月(12个月)5个月(12个月)5个月(12个月7%)7%(%)42%的pfs(%)42%(%)42%42%(%)42%42%(%)42%。在12个月时在12个月时未达到OS(%)60%,在12个月时与扩张(y/n)y y与持久性(y/n)N NA毒性Cr crs分级Lee Scale Crs crs crs 1-2(%)80 75 CR 3-4(%)3-4(%)13
11来源:Haslam A.&Prasad V.,Jama Network Open。2019; 2(5):E192535。 doi:10.1001/jamanetworkopen.2019.2535,更新建议将A. Haslam,J。Gill和V. Prasad Jama Netw Netw Open 2020 Vol的确认试验失败,将其降至36.1%的资格和10.9%的响应。 第3期第3页E200423受免疫学药物影响的癌症=美国癌症总患者人群的百分比有资格获得批准的检查点免疫疗法对免疫学药物的响应=总体反应率(完全加上局部),这些反应率是所有美国癌症患者>2019; 2(5):E192535。doi:10.1001/jamanetworkopen.2019.2535,更新建议将A. Haslam,J。Gill和V. Prasad Jama Netw Netw Open 2020 Vol的确认试验失败,将其降至36.1%的资格和10.9%的响应。第3期第3页E200423受免疫学药物影响的癌症=美国癌症总患者人群的百分比有资格获得批准的检查点免疫疗法对免疫学药物的响应=总体反应率(完全加上局部),这些反应率是所有美国癌症患者
背景和目的:患有原发性硬化性胆管炎(PSC)的人具有可变且经常进行性疾病的病程,与胆道和实质变化有关。这些变化通常通过磁共振成像(MRI)评估,包括磁共振胆管造影术(MRCP)的定性评估。我们的目的是研究新型客观定量MRCP指标与预后分数和患者结局的关联。方法:我们进行了一项回顾性研究,其中包括77个具有基线MRCP图像的大型Duct PSC的个体,后处理后处理以使用MRCP+ TM获得胆管的定量测量。参与者的分析得分,通过振动控制的瞬态弹性图和生化指数在基线时收集。不良结果 - 无生存率是在12年内没有代偿性肝硬化,肝移植(LT)或与肝脏相关的死亡的。通过COX回归建模评估了MRCP+衍生指标的预后价值。结果:记录了总计386例患者,16例代偿性,2例LT和5例与肝有关的死亡。基线时,约有50%的患者被分类为患疾病并发症的风险。MRCP+指标,尤其是描述胆管扩张严重程度的指标,与所有预后因素相关。单变量分析表明,代表管道直径,扩张和狭窄和/或扩张的导管百分比的MRCP+指标与生存有关。©2022作者。在多变量调整的分析中,中位导管直径与存活率显着相关(危险比10.9,95%CI 1.3 - 90.3)。结论:PSC患者中的MRCP+指标与生化,弹性和放射学预后分数相关,并可以预测无效的生存率。lay摘要:在这项研究中,我们在患有原发性硬化性胆管炎(PSC)的患者中评估了由软件工具(MRCP+)自动提供的新型客观定量MRCP指标与预后分数和患者结果的关联。我们观察到,PSC患者的MRCP+指标与生化,弹性和放射学预后分数相关,并且可以预测无效的生存率。由Elsevier B.V.代表欧洲肝脏研究协会(EASL)出版。这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
药物相互作用有时被认为是有害的,并会导致不良反应。然而,在某些情况下,有些人是治疗效果的利益相关者,这种组合策略被一些药物组合所利用,包括左旋多巴 (L-Dopa) 和多巴脱羧酶抑制剂、β-内酰胺类抗生素和克拉维酸、5-氟尿嘧啶 (5-FU) 和亚叶酸以及青霉素和丙磺舒。最近,一些药物组合已被整合到现代药物设计策略中,旨在通过新化合物不仅作为协同关联,而且作为活性的真正增强剂来提高已上市药物的效率。在这篇评论中,我们提供了此类策略的最新示例,特别关注微生物学和肿瘤学。
摘要。目标。To assess the longer-term effect of bimekizumab up to 1 year on patient-reported symptoms, health-related quality of life (HRQOL), and work productivity in patients with active PsA who were biologic disease-modifying antirheumatic drug (bDMARD)-naïve or had inadequate response/intolerance to tumor necrosis factor inhibitors (TNFi-IR).方法。是最佳的(临床Trials.gov:NCT03895203; BDMard-Noïve患者)和完整(NCT03896581; TNFI-IR患者)是第三阶段的研究,每4周的皮下Bimekizumab 160 mg的皮下Bimekizumab 160 mg。两项研究都是双盲,安慰剂对照到16周。完成了最佳或完整第16周的第52周的患者有资格获得开放标签的延伸,这是至关重要的(NCT04009499),在此期间,所有患者都接受了Bimekizumab。使用Bimekizumab和安慰剂治疗臂的个人研究数据报告了第52或40周(52/40)的患者报告疼痛,疲劳,身体机能,HRQOL和工作生产力。结果。在Bimekizumab随机患者中,整体工作障碍的改善已维持到第52周。观察到类似的趋势,旷工,表现主义和活动障碍。结论。bimekizumab的治疗可在患者报告的bdmard-neïve和tnfi-ir活性PSA患者中持续改善患者报告的症状,HRQOL和工作生产率长达1年。Bimekizumab-randomized patients demonstrated sustained mean improvements from base- line in patient-reported outcomes to week 52/40, including pain (visual analog scale [0-100 mm]: bDMARD-naïve –30.5; TNFi-IR –31.8), fatigue (Functional Assessment of Chronic Illness Therapy– Fatigue scale [0-52]: bDMARD-naïve 5.3; tnfi-ir 6.0),身体功能(健康评估问卷 - 差异指数[0-3]:bdmard-naïve–0.34; tnfi-ir –0.39)和HRQOL(36- ITEM Short Form Short Short Short Short Short Shorey Survey,物理组件摘要:BDMARD-NAï8.1.18.1; TNFI-8.4);在第16周改用Bimekizumab的安慰剂患者表明,从第16周到第52/40周的改善水平可比。
Sadeghi-Naini 解释说:“当你看 MRI 时,你会看到肿瘤内部或周围的区域,这些区域的强度和模式不同,因此你会更多地用视觉系统关注这些部分。但人工智能算法却对此视而不见。我们在算法中融入的注意力机制可帮助这些人工智能工具了解这些图像的哪些部分更重要,并在分析和预测时更加重视这些部分。”
4。Braun,T。P.,Eide,C。A.&Druker,B。J。对BCR-ABL1靶向疗法的反应和抗性。癌细胞卷。37 530–542预印本在https://doi.org/10.1016/j.ccell.2020.03.006(2020)。5。Cheng,H。C.,Qi,R。Z.,Paudel,H。&Zhu,H。J. 蛋白激酶和磷酸酶的调节和功能。 酶研究卷。 2011预印本在https://doi.org/10.4061/2011/794089(2011)。 6。 Bhullar,K。S.等。 以激酶为目标的癌症疗法:进步,挑战和未来的方向。 分子癌卷。 17预印本在https://doi.org/10.1186/s12943-018-0804-2(2018)。 7。 Grant,S。K.治疗蛋白激酶抑制剂。 细胞和分子生命科学卷。 66 1163–1177预印本在https://doi.org/10.1007/s00018-008-8539-7(2009)。 8。 Geraldes,P。&King,G。L.蛋白激酶C同工型的激活及其对糖尿病并发症的影响。 循环研究卷。 106 1319–1331预印本https://doi.org/10.1161/circresaha.110.217117(2010)。 9。 Silnitsky,S.,Rubin,S。J. S.,Zerihun,M。&Qvit,N。蛋白激酶作为治疗靶靶标的更新 - 第一部分:蛋白激酶C激活及其在癌症和心血管疾病中的作用。 国际分子科学杂志卷。 24预印本在https://doi.org/10.3390/ijms242417600(2023)。 10。 Pottier,C。等。 癌症中的酪氨酸激酶抑制剂:靶向治疗的突破和挑战。 11。Cheng,H。C.,Qi,R。Z.,Paudel,H。&Zhu,H。J.蛋白激酶和磷酸酶的调节和功能。 酶研究卷。 2011预印本在https://doi.org/10.4061/2011/794089(2011)。 6。 Bhullar,K。S.等。 以激酶为目标的癌症疗法:进步,挑战和未来的方向。 分子癌卷。 17预印本在https://doi.org/10.1186/s12943-018-0804-2(2018)。 7。 Grant,S。K.治疗蛋白激酶抑制剂。 细胞和分子生命科学卷。 66 1163–1177预印本在https://doi.org/10.1007/s00018-008-8539-7(2009)。 8。 Geraldes,P。&King,G。L.蛋白激酶C同工型的激活及其对糖尿病并发症的影响。 循环研究卷。 106 1319–1331预印本https://doi.org/10.1161/circresaha.110.217117(2010)。 9。 Silnitsky,S.,Rubin,S。J. S.,Zerihun,M。&Qvit,N。蛋白激酶作为治疗靶靶标的更新 - 第一部分:蛋白激酶C激活及其在癌症和心血管疾病中的作用。 国际分子科学杂志卷。 24预印本在https://doi.org/10.3390/ijms242417600(2023)。 10。 Pottier,C。等。 癌症中的酪氨酸激酶抑制剂:靶向治疗的突破和挑战。 11。蛋白激酶和磷酸酶的调节和功能。酶研究卷。2011预印本在https://doi.org/10.4061/2011/794089(2011)。6。Bhullar,K。S.等。以激酶为目标的癌症疗法:进步,挑战和未来的方向。分子癌卷。17预印本在https://doi.org/10.1186/s12943-018-0804-2(2018)。7。Grant,S。K.治疗蛋白激酶抑制剂。细胞和分子生命科学卷。66 1163–1177预印本在https://doi.org/10.1007/s00018-008-8539-7(2009)。8。Geraldes,P。&King,G。L.蛋白激酶C同工型的激活及其对糖尿病并发症的影响。循环研究卷。106 1319–1331预印本https://doi.org/10.1161/circresaha.110.217117(2010)。9。Silnitsky,S.,Rubin,S。J. S.,Zerihun,M。&Qvit,N。蛋白激酶作为治疗靶靶标的更新 - 第一部分:蛋白激酶C激活及其在癌症和心血管疾病中的作用。国际分子科学杂志卷。24预印本在https://doi.org/10.3390/ijms242417600(2023)。 10。 Pottier,C。等。 癌症中的酪氨酸激酶抑制剂:靶向治疗的突破和挑战。 11。24预印本在https://doi.org/10.3390/ijms242417600(2023)。10。Pottier,C。等。癌症中的酪氨酸激酶抑制剂:靶向治疗的突破和挑战。11。癌症卷。12 https://doi.org/10.3390/cancers12030731(2020)的预印本。Barouch-Bentov,R。&Sauer,K。激酶中耐药性的机制。有关研究药物的专家意见。20 153–208预印本在https://doi.org/10.1517/13543784.2011.546344(2011)。12。Lin,J。J. &Shaw,A。T.抵抗力:肺癌的靶向疗法。 癌症趋势。 2 350–364预印本在https://doi.org/10.1016/j.trecan.2016.05.010(2016)。 13。 de Santis,S。等。 克服对激酶抑制剂的抗性:慢性髓样白血病的范例。 Oncotargets and Therapy Vol。 15 103–116 https://doi.org/10.2147/ott.s289306(2022)的预印本。 14。 Drilon,A。等。 下一代TRK激酶抑制剂在TRK融合阳性固体瘤患者中获得了对先前TRK激酶抑制的耐药性。 癌症Discov 7,963–972(2017)。 15。 Schoepfer,J。等。 发现Asciminib(ABL001),这是BCR-ABL1酪氨酸激酶活性的变构抑制剂。 J Med Chem 61,8120–8135(2018)。 16。 OU,X.,Gao,G.,Habaz,I。 A.,&Wang,Y。对酪氨酸激酶抑制剂靶向疗法的抗性机制和克服策略。 Medcomm,5(9),E694。 https://doi.org/10.1002/mco2.694(2024)。 17。 Cohen,P。,Cross,D。&Jänne,P.A。 伊马替尼20年后的激酶药物发现:进步和未来方向。 nat Rev Drug Discov 20,551–569。Lin,J。J.&Shaw,A。T.抵抗力:肺癌的靶向疗法。癌症趋势。2 350–364预印本在https://doi.org/10.1016/j.trecan.2016.05.010(2016)。 13。 de Santis,S。等。 克服对激酶抑制剂的抗性:慢性髓样白血病的范例。 Oncotargets and Therapy Vol。 15 103–116 https://doi.org/10.2147/ott.s289306(2022)的预印本。 14。 Drilon,A。等。 下一代TRK激酶抑制剂在TRK融合阳性固体瘤患者中获得了对先前TRK激酶抑制的耐药性。 癌症Discov 7,963–972(2017)。 15。 Schoepfer,J。等。 发现Asciminib(ABL001),这是BCR-ABL1酪氨酸激酶活性的变构抑制剂。 J Med Chem 61,8120–8135(2018)。 16。 OU,X.,Gao,G.,Habaz,I。 A.,&Wang,Y。对酪氨酸激酶抑制剂靶向疗法的抗性机制和克服策略。 Medcomm,5(9),E694。 https://doi.org/10.1002/mco2.694(2024)。 17。 Cohen,P。,Cross,D。&Jänne,P.A。 伊马替尼20年后的激酶药物发现:进步和未来方向。 nat Rev Drug Discov 20,551–569。2 350–364预印本在https://doi.org/10.1016/j.trecan.2016.05.010(2016)。13。de Santis,S。等。 克服对激酶抑制剂的抗性:慢性髓样白血病的范例。 Oncotargets and Therapy Vol。 15 103–116 https://doi.org/10.2147/ott.s289306(2022)的预印本。 14。 Drilon,A。等。 下一代TRK激酶抑制剂在TRK融合阳性固体瘤患者中获得了对先前TRK激酶抑制的耐药性。 癌症Discov 7,963–972(2017)。 15。 Schoepfer,J。等。 发现Asciminib(ABL001),这是BCR-ABL1酪氨酸激酶活性的变构抑制剂。 J Med Chem 61,8120–8135(2018)。 16。 OU,X.,Gao,G.,Habaz,I。 A.,&Wang,Y。对酪氨酸激酶抑制剂靶向疗法的抗性机制和克服策略。 Medcomm,5(9),E694。 https://doi.org/10.1002/mco2.694(2024)。 17。 Cohen,P。,Cross,D。&Jänne,P.A。 伊马替尼20年后的激酶药物发现:进步和未来方向。 nat Rev Drug Discov 20,551–569。de Santis,S。等。克服对激酶抑制剂的抗性:慢性髓样白血病的范例。Oncotargets and Therapy Vol。15 103–116 https://doi.org/10.2147/ott.s289306(2022)的预印本。14。Drilon,A。等。下一代TRK激酶抑制剂在TRK融合阳性固体瘤患者中获得了对先前TRK激酶抑制的耐药性。癌症Discov 7,963–972(2017)。15。Schoepfer,J。等。发现Asciminib(ABL001),这是BCR-ABL1酪氨酸激酶活性的变构抑制剂。J Med Chem 61,8120–8135(2018)。16。OU,X.,Gao,G.,Habaz,I。 A.,&Wang,Y。对酪氨酸激酶抑制剂靶向疗法的抗性机制和克服策略。 Medcomm,5(9),E694。 https://doi.org/10.1002/mco2.694(2024)。 17。 Cohen,P。,Cross,D。&Jänne,P.A。 伊马替尼20年后的激酶药物发现:进步和未来方向。 nat Rev Drug Discov 20,551–569。OU,X.,Gao,G.,Habaz,I。A.,&Wang,Y。对酪氨酸激酶抑制剂靶向疗法的抗性机制和克服策略。Medcomm,5(9),E694。https://doi.org/10.1002/mco2.694(2024)。 17。 Cohen,P。,Cross,D。&Jänne,P.A。 伊马替尼20年后的激酶药物发现:进步和未来方向。 nat Rev Drug Discov 20,551–569。https://doi.org/10.1002/mco2.694(2024)。17。Cohen,P。,Cross,D。&Jänne,P.A。 伊马替尼20年后的激酶药物发现:进步和未来方向。 nat Rev Drug Discov 20,551–569。Cohen,P。,Cross,D。&Jänne,P.A。伊马替尼20年后的激酶药物发现:进步和未来方向。nat Rev Drug Discov 20,551–569。https://doi.org/10.1038/s41573-021-00195-4(2021)。18。Leonetti,A。等。 在EGFR突变的非小细胞肺癌中对osimertinib的抗性机制。 英国癌症杂志卷。 121 725–737预印本在https://doi.org/10.1038/s41416-019-019-0573-8(2019)。 19。 Teuber,A。等。 基于Avapritinib的SAR研究推出了套件和PDGFRA中的结合口袋。 nat Commun 15,(2024)。 20。 Réa,D。&Hughes,T。P. Asciminib的发展,Asciminib是BCR-ABL1的新型变构抑制剂。 肿瘤/血液学的批判性评论卷。 171预印本在https://doi.org/10.1016/j.critrevonc.2022.103580(2022)。 21。 Jiang,Q.,Li,M.,Li,H。&Chen,L。Entectinib,一种新的多目标抑制剂,用于癌症治疗。 生物医学和药物治疗卷。 150预印本在https://doi.org/10.1016/j.biopha.2022.112974(2022)。Leonetti,A。等。在EGFR突变的非小细胞肺癌中对osimertinib的抗性机制。 英国癌症杂志卷。 121 725–737预印本在https://doi.org/10.1038/s41416-019-019-0573-8(2019)。 19。 Teuber,A。等。 基于Avapritinib的SAR研究推出了套件和PDGFRA中的结合口袋。 nat Commun 15,(2024)。 20。 Réa,D。&Hughes,T。P. Asciminib的发展,Asciminib是BCR-ABL1的新型变构抑制剂。 肿瘤/血液学的批判性评论卷。 171预印本在https://doi.org/10.1016/j.critrevonc.2022.103580(2022)。 21。 Jiang,Q.,Li,M.,Li,H。&Chen,L。Entectinib,一种新的多目标抑制剂,用于癌症治疗。 生物医学和药物治疗卷。 150预印本在https://doi.org/10.1016/j.biopha.2022.112974(2022)。在EGFR突变的非小细胞肺癌中对osimertinib的抗性机制。英国癌症杂志卷。 121 725–737预印本在https://doi.org/10.1038/s41416-019-019-0573-8(2019)。 19。 Teuber,A。等。 基于Avapritinib的SAR研究推出了套件和PDGFRA中的结合口袋。 nat Commun 15,(2024)。 20。 Réa,D。&Hughes,T。P. Asciminib的发展,Asciminib是BCR-ABL1的新型变构抑制剂。 肿瘤/血液学的批判性评论卷。 171预印本在https://doi.org/10.1016/j.critrevonc.2022.103580(2022)。 21。 Jiang,Q.,Li,M.,Li,H。&Chen,L。Entectinib,一种新的多目标抑制剂,用于癌症治疗。 生物医学和药物治疗卷。 150预印本在https://doi.org/10.1016/j.biopha.2022.112974(2022)。英国癌症杂志卷。121 725–737预印本在https://doi.org/10.1038/s41416-019-019-0573-8(2019)。19。Teuber,A。等。 基于Avapritinib的SAR研究推出了套件和PDGFRA中的结合口袋。 nat Commun 15,(2024)。 20。 Réa,D。&Hughes,T。P. Asciminib的发展,Asciminib是BCR-ABL1的新型变构抑制剂。 肿瘤/血液学的批判性评论卷。 171预印本在https://doi.org/10.1016/j.critrevonc.2022.103580(2022)。 21。 Jiang,Q.,Li,M.,Li,H。&Chen,L。Entectinib,一种新的多目标抑制剂,用于癌症治疗。 生物医学和药物治疗卷。 150预印本在https://doi.org/10.1016/j.biopha.2022.112974(2022)。Teuber,A。等。基于Avapritinib的SAR研究推出了套件和PDGFRA中的结合口袋。 nat Commun 15,(2024)。 20。 Réa,D。&Hughes,T。P. Asciminib的发展,Asciminib是BCR-ABL1的新型变构抑制剂。 肿瘤/血液学的批判性评论卷。 171预印本在https://doi.org/10.1016/j.critrevonc.2022.103580(2022)。 21。 Jiang,Q.,Li,M.,Li,H。&Chen,L。Entectinib,一种新的多目标抑制剂,用于癌症治疗。 生物医学和药物治疗卷。 150预印本在https://doi.org/10.1016/j.biopha.2022.112974(2022)。基于Avapritinib的SAR研究推出了套件和PDGFRA中的结合口袋。nat Commun 15,(2024)。20。Réa,D。&Hughes,T。P. Asciminib的发展,Asciminib是BCR-ABL1的新型变构抑制剂。肿瘤/血液学的批判性评论卷。171预印本在https://doi.org/10.1016/j.critrevonc.2022.103580(2022)。21。Jiang,Q.,Li,M.,Li,H。&Chen,L。Entectinib,一种新的多目标抑制剂,用于癌症治疗。 生物医学和药物治疗卷。 150预印本在https://doi.org/10.1016/j.biopha.2022.112974(2022)。Jiang,Q.,Li,M.,Li,H。&Chen,L。Entectinib,一种新的多目标抑制剂,用于癌症治疗。生物医学和药物治疗卷。150预印本在https://doi.org/10.1016/j.biopha.2022.112974(2022)。
b'由于 TGF- 信号在免疫稳态中的作用,其紊乱是炎症性疾病的根本原因。许多慢性炎症性疾病都以纤维化为特征,纤维化与细胞外基质的过度沉积同时发生,导致受影响器官的正常功能丧失。TGF- 家族还通过激活成纤维细胞向肌成纤维细胞表型转变,在纤维化的启动和进展中发挥着重要作用。在肿瘤发生的早期阶段,TGF- 可能通过诱导肿瘤前细胞的细胞停滞和凋亡而充当肿瘤抑制因子。然而,在后期,当癌细胞获得致癌突变,从而脱离 TGF- 肿瘤抑制因子功能时,它会通过刺激肿瘤细胞进行上皮\xe2\x80\x93间质转化 (EMT) 而成为肿瘤促进剂,从而增加迁移和侵袭。 TGF- 在肿瘤微环境内的免疫抑制中也发挥着核心作用,最近的研究揭示了它在肿瘤免疫逃避和癌症免疫治疗反应不佳中的作用。'
目的:深部脑刺激 (DBS) 是一种行之有效的帕金森病 (PD) 治疗方法,通常可增强运动功能。然而,DBS 后可能会出现一些不良副作用,从而降低患者的生活质量。因此,临床团队必须仔细选择要进行 DBS 的患者。在过去十年中,曾有人尝试将术前数据与 DBS 临床结果联系起来,其中大部分都集中在运动症状上。在本文中,我们提出了一种基于机器学习的方法,能够预测大量 PD 的 DBS 临床结果。方法:我们提出了一种多模式管道,称为 PassFlow,可预测 84 个临床术后临床评分。PassFlow 由一个用于压缩临床信息的人工神经网络、一种用于从 T1 成像中提取形态生物标志物的最先进的图像处理方法以及一个用于执行回归的 SVM 组成。我们在 196 名接受 DBS 的 PD 患者身上验证了 PassFlow。结果:PassFlow 的相关系数高达 0.71,能够显著预测 84 个评分中的 63 个,优于比较线性方法。还发现,利用这些术前信息预测的指标数量与可获得这些信息的患者数量相关,表明 PassFlow 方法仍在积极学习中。结论:我们提出了一种基于机器学习的新型流程,用于预测 PD 患者 DBS 术后的各种临床结果。PassFlow 考虑了来自不同数据模式的各种生物标志物,仅从术前数据中就显示出一些评分的高相关系数。这表明,DBS 的许多临床结果都可以预测,而与特定的模拟参数无关,因为 PassFlow 已在没有此类刺激相关信息的情况下得到验证。
为工程专业的学生设计足够的实验室以激发他们的创造力并理解实际问题非常重要。虽然世界和学习目标都在发生变化,但基于问题的学习 (PBL) 可以被视为教授高级计算机网络的理想教学工具 [17]。用于教授计算机网络和嵌入式系统的 PBL 意味着重要案例的实际说明。目前,有几种应用程序可以让学生测试他们在网络方面的知识和实践技能。这些工具在提供的功能方面有很大不同,从功能有限的最简单工具到功能众多的最复杂工具。更高级课程的一个常用示例是 Boson Net(参见 [18]),这是一个模拟程序,例如 Cisco Packet Tracer。它由三部分组成: