还必须评估 AI 工具在具体案例中的表现。例如,AI 系统应容忍何种程度的错误(包括假阳性和假阴性)?答案可能取决于几个因素,例如错误对个人和执法资源造成的后果的严重性;AI 系统分析的个人信息的敏感性;以及在没有 AI 系统的情况下使用的调查流程的相对准确性、成本、可扩展性或速度。性能可以在实验室(部署前)和现场进行评估,在这两种情况下,用于确定最低准确度的阈值和因素可能不同。工具的使用时间也可能很重要,因为机器学习系统的性能通常会随着使用而提高。
电信业务中的竞争尤其是光纤租赁提供商(FLP)服务提供商在印度尼西亚的纤维化服务提供商,随着各种新参与者的出现以及客户对互联网速度和稳定性的需求的增加,越来越艰难。本竞赛鼓励公司继续创新和开发有效的业务模式。pt Ifote Infotek需要评估和发展其业务模式,以保持竞争力并实现可持续增长。
征文:教育和教育研究中的人工智能国际研讨会 (AIEER) AIEER 2024 教育和教育研究中的人工智能国际研讨会是第 27 届欧洲人工智能会议 ECAI 2024 [https://www.ecai2024.eu/] 的一部分。本次研讨会定于 2024 年 10 月 19 日至 20 日星期六和星期日举行。 研讨会范围 本次研讨会有两个不同的重点,旨在更广泛地面向教育人工智能领域。 第 1 部分。由社会科学主导的讨论,讨论人工智能应用可能有助于解决的教育中的实际问题。这包括教育和教学人工智能的研究,也包括社会科学、经济学和人文学科,包括所有学科,如教育和教学实际行动、以教育需求为重点的劳动力市场研究、教育史和相关教育文化遗产,以及决策和行为科学观点的信息预测。一方面,我们关注人工智能、教育和社会之间的联系。这包括定量和定性研究、分析教育和劳动力市场数据的数据科学方法、推荐系统的人工智能方法以及数字化学习。另一方面,我们关注如何使用人工智能来突破该领域的界限。这包括开发新方法(包括使用人工智能的方法)、寻找和提供可访问的新数据源、丰富数据等等。在这两种情况下,不同观点之间的沟通和相互理解至关重要,这也是本次研讨会的目标之一。更广泛地说,我们感兴趣的是人工智能方法如何影响教育的所有领域以及企业和劳动力市场。这包括从小学到高等教育的所有教育部门如何受到人工智能方法的影响和对其作出反应的方法。用人工智能方法设计数字化未来为教育提出了几个问题:在最广泛的层面上,立法和规范问题;在公司层面,关于投资决策以及如何保持生产力和劳动力的问题;在个人层面,关于资格以及哪些技能需要应用和可能重新学习的问题。因此,技能和资格是教育和教育研究中人工智能的核心。第 2 部分。关于可以开发哪些人工智能应用程序(以及如何开发)来解决第 1 部分提出的问题的(计算机科学主导)讨论。使用基于人工智能的系统来支持教学或学习已经发展了 40 多年,但近年来,由于 COVID-19 大流行期间电子学习工具的使用增加以及最近生成人工智能的爆炸式增长,其增长显着增加。我们正处于这一领域发展的关键时刻,人工智能专家和教育专家必须携手合作,以在教学过程中最佳地利用这项技术。本次研讨会旨在为展示新提案和反思这一具有如此社会意义的领域的最新技术创造空间。在第一部分中,我们特别关注人工智能的技术方面,重点关注用于内容创建(生成式人工智能)、学生分析(机器学习)、学习分析或教师可解释的人工智能方法的具体技术
Brian Drake 是国防情报局未来能力与创新办公室的人工智能主任。他领导该机构的人工智能研究和开发投资组合。作为一名分析师,他领导多个团队应对来自国家和非国家行为者的威胁,涉及技术、反情报和禁毒主题。他曾担任德勤咨询公司的经理和托夫勒联合公司的管理顾问,专门为商业和政府客户提供战略规划、业务发展、合作咨询、技术和创新服务。他还曾担任系统规划和分析公司的军事平台和政策分析师以及 DynCorp 的核武器计划分析师。他拥有默瑟大学的文学学士学位和乔治城大学的硕士学位。除了他的官方职责外,他还是国防情报纪念基金会的总裁兼首席执行官;为阵亡国防情报官员的子女设立的奖学金基金。
文章引用:Zhabotynska, SA (2024)。读者对政治新闻叙事的接受:多模态性和互文性。认知、交流、话语,29,86-103。doi.org.10.26565/2218-2926-2024-29-06 摘要 战略叙事理论(Miskimmon 等人,2013 年;2017 年等)是在国际关系领域发展起来的,它将战略叙事视为政治行为者建构国际政治共同意义的一种手段,并塑造国内和国际行为者的看法、信念和行为。该理论的作者认为,对战略叙事运作的解释需要研究其形成、投射和接受。这种解释将各个学术领域聚集在一起,旨在寻找缺乏的方法论,以展示战略叙事的形成、投射和接收方面如何像三联画一样协同工作。本文从认知语言学的角度探讨了这个问题,认知语言学研究口头传递信息的概念基础。本文提出并测试了一个新颖的方法论框架,该框架假定以口头和视觉呈现的信息的认知本体论,作为追踪三个叙事方面同时动态的规律的可行基础。本文重点关注媒体新闻文本中所呈现的投射/接收叙事方面以及读者对此的反应——这是与互文性语言领域相关的问题。从方法论和主题上看,本文延续了先前的研究(Zhabotynska & Velivchenko,2019 年;Zhabotynska & Ryzhova,2022 年;Chaban 等人,2023 年;Chaban 等人,2024 年等),研究新闻媒体文本中的战略叙事的形成/投射方面。
本新闻稿包含某些前瞻性陈述,包括有关Inmedix的临床前研究计划和产品能力计划的不限制陈述。您被告知,这种前瞻性陈述不能保证未来的绩效,涉及Inmedix业务中固有的风险和不确定性,这些风险和不确定性可能会显着影响预期的结果,包括不受限制,开发进展,临床测试和监管部门的批准,原材料和人员成本以及立法,财产,财产,财政和其他监管措施的发展。所有前瞻性陈述都是由本警告声明完整的,并且Inmedix没有义务修改或更新任何前瞻性声明,以反映本发行新闻发布会后的事件或情况。
因此,该协会将与其整个网络一起,每年为参与打击和预防 VSS 的军事和民事人员提供培训模块。这些培训课程的目的主要是提高VSS事件的检测和管理能力,更好地了解受害者的定位并掌握适用的法律和司法框架。所有受此措施覆盖的人员必须在 2026 年底前接受初始培训模块。
文章标题:人工智能(AI)在医疗保健中的应用:综述 作者:Mohammed Yousef Shaheen[1] 所属机构:沙特阿拉伯[1] Orcid ids:0000-0002-2993-2632[1] 联系电子邮件:yiroyo1235@tmednews.com 许可信息:本作品已根据知识共享署名许可 http://creativecommons.org/licenses/by/4.0/ 以开放获取的方式发表,允许在任何媒体中不受限制地使用、分发和复制,只要正确引用原始作品即可。使用条款和出版政策可在 https://www.scienceopen.com/ 上找到。预印本声明:本文为预印本,尚未经过同行评审,正在考虑并提交给 ScienceOpen Preprints 进行开放同行评审。DOI:10.14293/S2199-1006.1.SOR-.PPVRY8K.v1 预印本首次在线发布:2021 年 9 月 25 日
文章标题:抗击 COVID-19:人工智能技术与挑战 作者:Nikhil Patel[1]、Sandeep Trivedi[2]、Jyotir Moy Chatterjee[3] 所属机构:毕业于杜比克大学,联系电子邮件 ID:Patelnikhilr88@gmail.com[1],IEEE 会员,毕业于 Technocrats Institute of Technology,联系电子邮件 ID:sandeep.trived.ieee@gmail.com[2],尼泊尔加德满都佛陀教育基金会[3] Orcid id:0000-0001-6221-3843[1]、0000-0002-1709-247X[2]、0000-0003-2527-916X[3] 联系电子邮件:sandeep.trived.ieee@gmail.com 许可信息:本作品已以开放获取形式发表根据 Creative Commons 署名许可 http://creativecommons.org/licenses/by/4.0/,允许在任何媒体中不受限制地使用、分发和复制,前提是正确引用原始作品。条件、使用条款和出版政策可在 https://www.scienceopen.com/ 找到。预印本声明:本文为预印本,尚未经过同行评审,正在考虑并提交给 ScienceOpen Preprints 进行公开同行评审。DOI:10.14293/S2199-1006.1.SOR-.PPVK63O.v2 预印本首次在线发布:2022 年 7 月 25 日 关键词:COVID-19、SVM、神经网络、NLP、数学建模、高斯模型、疫情防控
1.21。“能源行业自愿补救计划”创新基金和减少碳排放基金于2022年向社区企业开放。这些代表总基金的25%。主要基金(代表该计划的75%),专门用于帮助“脆弱的消费者”,仅开放慈善机构,并在很大程度上由大型慈善机构降低。尽管大多数社区能源组织在燃料贫困和能源效率咨询方面非常有效,但由于它主要是亲自,通常在家里,并由了解当地社区,住房股票和其他当地支持规定的人们提供(例如,债务咨询,获得福利)。这使得提供一致的服务并保留和培养好员工变得具有挑战性。布里斯托尔大学研究计算得出,社区能源燃料贫困和能源效率建议工作每花费1英镑用于送货时至少提供9英镑的社交回报。