甲板部 DA 甲板艇 DA01 全部 DA02 按要求 DA03 按要求 DB DB01 全部 DB02 按要求 DB03 按要求 工程部 EA 发动机/船舶修理厂 EA02 所有液压系统 EA04 所有 AC&R EA05 所有 EE 电气工具发放/SAF EE01 所有电气修理厂 EE02 所有 EM 主机房 1 EM01 所有主机房 2 EM02 所有 AMR FWD EM03 按要求 AMR AFT EM04 按要求 油实验室 EB14 所有仪表校准 FCA1 所有 ER 船体修理 ER01 所有机械修理厂 ER03 所有损害控制 ER04 所有 DCPO ER09 所有行政部门 EX ADMIN EX01 所有 3MC EX03 所有 MDS 仅离船服务 ES01 包含所有 X- 服务 XRICS MDS 仅 MAA EX04 所有 MDS 仅医疗部门 MH 医疗 MH01 所有
摘要:已经提出,神经系统具有产生21种动作的能力,因为它重新使用了一些不变的代码。先前的工作已经确定,在不同运动中,动态23的神经种群活动的22个动态是相似的,其中动态23是指人口活动的瞬时空间模式如何变化。在这里,我们测试24神经种群的不变动态是否实际上用于发出25个直接运动的命令。使用脑机界面,该脑机界面将猕猴的26皮层活性转化为神经假体光标的命令,我们发现在不同运动中具有不同的神经活动模式发出了相同的27命令。然而,28这些不同的模式是可以预测的,因为我们发现活动29模式之间的过渡受到跨运动的相同动力的控制。这些不变动态是30个低维的动力学,并且在批判性地与脑机界面保持一致,因此它们预测了31个神经活动的特定组成部分,实际上发出了下一个命令。我们引入了32个最佳反馈控制模型,该模型表明不变动态可以帮助将33个运动反馈转换为命令,从而减少了神经人口需要34控制运动的输入。总的来说,我们的结果表明,不变的动态驱动器命令35可以控制各种动作,并显示如何与不变的36动力学集成反馈以发出可通用的命令。37
乔治· N ·阿彭泽勒少将 副卫生局长兼副司令(作战) 乔治(内德)阿彭泽勒少将担任陆军最大的下属司令部的副卫生局长兼副司令(作战),负责全军和全球 140 万受益人的健康和战备情况。他负责监督 110 亿美元的运营预算的财务,监督绩效评估并制定指标以确保部队和医疗部队做好战斗准备,领导陆军医学重组和国会指示的向国防卫生局 (DHA) 的过渡,为医疗战备司令部领导层提供指导,监控支持陆军战备的医疗保健提供平台和系统,并实现陆军各军种司令部和其他利益相关者之间的同步。此前,MG Appenzeller 担任国防卫生局参谋长,负责协调该局工作人员确保任务成功。 DHA 是一个战斗支援机构,为作战指挥官提供支持,并为联合部队的医疗服务提供支持,以提供医疗准备就绪的部队和准备就绪的医疗部队。在这个职位上,MG Appenzeller 负责监督 TRICARE 健康计划,为超过 950 万受益人提供服务,并担任 MHS 电子健康记录功能负责人。MG Appenzeller 毕业于杜兰大学,获得生物学理学学士学位和 ROTC 委任。随后,他毕业于南卡罗来纳医科大学。他在南卡罗来纳医科大学完成了内科实习。后来,他在圣安东尼奥制服健康教育联盟完成了为期三年的急诊医学住院医师培训。MG Appenzeller 早期的职务包括担任 David B. Bleak TMC 主任,服务于美国野战炮兵训练中心;美国 MEDDAC 急诊医学部主任,通用电气海德堡;91W IET、AMEDD C&S 主任;以及佐治亚州斯图尔特堡温陆军社区医院急诊医学助理主任。2006 年 1 月,他在伊拉克巴格达部署 15 个月期间,担任第三步兵师和多国师中心的师级外科医生。随后,他被任命为佐治亚州斯图尔特堡温陆军社区医院临床服务副指挥官。他负责指挥美国陆军医疗活动-阿拉斯加、美国陆军医疗活动-肯塔基州坎贝尔堡和布兰奇菲尔德陆军社区医院以及布鲁克陆军医疗中心-德克萨斯州萨姆休斯顿堡。他还担任过美国非洲司令部指挥外科医生。他曾担任过太平洋地区卫生司令部副司令、布鲁克陆军医疗中心司令和中部地区卫生司令部司令。除了伊拉克自由行动之外,MG Appenzeller 的行动经验还包括担任医疗队队长,为古巴关塔那摩湾 JTF160 第 61 区域支援医疗公司中的古巴和海地移民提供人道主义护理,以及担任第 62 战斗支援医院和第 212 机动陆军外科医院的紧急服务负责人,为科索沃邦德斯蒂尔营的 TF-Falcon 提供支持。
Myron B. McDaniels 上校 美国陆军医疗司令部陆军康复护理计划 (ARCP) 副参谋长 Myron B. McDaniels 上校从汉普顿大学(弗吉尼亚州汉普顿)获得文学学士学位,并在那里获得了杰出军事毕业生荣誉并被任命为医疗服务团成员。在东弗吉尼亚医学院(弗吉尼亚州诺福克)获得医学博士学位后,他被调到医疗团。McDaniels 上校在马里兰州贝塞斯达的国家首都财团完成了儿科实习和住院医师培训,并曾在韩国龙山第 121 综合医院、德国维尔茨堡医疗活动中心和科罗拉多州卡森堡埃文斯陆军社区医院担任全科儿科医生和服务或部门负责人。他指挥过位于北卡罗来纳州布拉格堡的第 261 多功能医疗营、伊拉克巴拉德联合基地和德国米绍的第 212 战斗支援医院,该部队在那里完成了医疗互操作性任务并与北约和盟国进行了演习。他的参谋工作包括伊拉克巴拉德阿纳康达 LSA 和科罗拉多州卡森堡的第 8 步兵团第 1 营的营外科医生;韩国红云营第 2 步兵师指挥外科医生;堪萨斯州莱文沃斯堡蒙森陆军健康中心临床服务副指挥官;北卡罗来纳州布拉格堡美国陆军预备役司令部指挥外科医生;弗吉尼亚州福尔斯彻奇卫生局局长办公室 G-3/5/7 医疗保健服务主任;以及卫生局局长办公室和美国陆军医疗司令部的部队指挥官和助理参谋长。麦克丹尼尔斯上校目前担任美国陆军医疗司令部陆军康复护理计划 (ACRP) 副参谋长。麦克丹尼尔斯上校拥有汉普顿大学 (弗吉尼亚州汉普顿) 生物学文学士学位和东弗吉尼亚医学院 (弗吉尼亚州诺福克) 医学博士学位。他的军事教育包括德克萨斯州萨姆休斯顿堡的陆军医疗部军官基础和高级课程;堪萨斯州莱文沃斯堡的指挥和参谋学院;以及哥伦比亚特区华盛顿麦克奈尔堡的德怀特·艾森豪威尔学校高级服务学院,他在那里获得了国家安全和资源战略理学硕士学位。他获得的奖章和勋章包括功绩勋章、铜星勋章(1 枚橡树叶簇)、功绩服务勋章(3 枚铜橡树叶簇)、陆军嘉奖勋章(1 枚铜橡树叶簇)、国防服务勋章(2 枚铜质服务之星)、伊拉克战役勋章(2 枚铜质战役之星)、全球反恐战争远征勋章、全球反恐战争服务勋章、韩国国防服务勋章、杰出志愿服务勋章、陆军服务丝带、海外服务丝带(4)、陆军英勇单位、陆军功绩单位奖,军事医疗功绩勋章、陆军参谋身份徽章、战斗医疗徽章和跳伞员徽章。
酒店业的语音助理:使用人工智能为客户服务。目的——语音助理 (VA) 通过识别人类语音并执行用户发出的命令来增强人机交互。本文研究了酒店业中酒店与客人之间基于 VA 的互动。该研究将 VA 置于人工智能 (AI) 支持的物联网 (IoT) 环境中,颠覆了旧的做法和流程。智能酒店业使用 VA 以经济高效的方式为客人提供轻松的价值共同创造。该研究调查了消费者对酒店业 VA 的看法和期望,并通过专家技术提供商探索 VA 功能。设计/方法/方法——这篇实证论文研究了 VA 在酒店环境中的当前使用情况和未来影响。它使用定性、半结构化的深入访谈,采访了 7 位专家酒店业 VA 技术提供商和 21 位有 VA 经验的酒店客人。该研究采用供需方法,全面解决酒店业中的 VA。发现——研究结果表明,酒店和客人两方终端用户的需求,探讨了 VA 的优势和挑战。分析表明,VA 正日益成为数字助理。VA 技术可帮助酒店改善客户服务、扩大运营能力并降低成本。尽管尚处于起步阶段,但 VA 技术已在优化酒店运营和升级客户服务方面取得了进展。该研究提出了一种语音交互模型。原创性——VA 研究通常侧重于私人家庭中的技术,而不是商业或酒店空间中的技术。本文为智能酒店业中有关人工智能和物联网的新兴文献做出了贡献,并探讨了 VA 的接受度和操作性。该研究有助于概念化 VA 支持的酒店服务,并探索其积极和消极特征以及未来前景。研究局限性/含义——本研究通过使用 VA 和智能酒店和旅游生态系统的发展来促进酒店服务的转型。该研究可以从与酒店经理的进一步研究中受益,以反映酒店经营者的观点并调查他们对 VA 的看法。进一步的研究还可以探索不同背景下消费者与虚拟助理互动的不同方面。实际意义——本文对酒店管理和人机交互最佳实践做出了重大贡献。它支持技术提供商重新考虑如何开发合适的技术解决方案,以提高其战略竞争力。它还解释了如何经济高效地使用虚拟助理,同时为旅行者的体验增加价值。
摘要:肌电控制是利用肌肉的电信号来控制假肢或辅助机器人的过程。肌电控制中的模式识别是一个具有挑战性的领域,因为信号的底层分布在应用过程中可能会发生变化。协变量变化(包括手臂位置的变化或不同程度的肌肉激活)通常会导致控制信号的严重不稳定。这项工作试图通过使用稀疏高斯过程 (sGP) 近似变分自由能和引入基于无监督增量学习方法的新型自适应模型来增强肌电人机界面,以克服这些挑战。新型自适应模型整合了类间和类内距离,以提高具有挑战性条件下的预测稳定性。此外,它展示了增量更新的成功结合,这被证明可以显著提高在线用户研究中预测的性能和稳定性。
人工智能如何改变我们做出购买决策的方式?这对商标法意味着什么?商标法的核心在于如何购买商品和服务,而由于人工智能正在影响购买过程,因此从定义上讲它也影响着商标法。人工智能通过两种方式影响购买过程:(a)消费者可获得的品牌信息和(b)谁来做出购买决策。亚马逊的 Alexa 等人工智能个人零售助理有可能成为品牌向消费者提供的“守门人”,控制向消费者提供哪些品牌信息,并以纯粹的形式购买品牌产品,在人工智能所谓的“自动执行模型”中几乎不需要或根本不需要人为干预,从而有效地将传统的购物体验从“先购物后发货”模式颠覆为“先发货后购物”模式。商标法的许多关键方面都涉及人性的弱点。如果您考虑商标法和实践中的一些“流行词”,例如“混淆”、“不完全记忆”、“联想”和“商标混淆”,这些概念都围绕着人类的弱点。然而,人工智能有可能从购买过程中消除“人性”和“弱点”。人工智能应用程序可以通过“给我买个灯泡”等一般命令来购买产品。人类消费者与人工智能应用程序购买的灯泡品牌没有任何互动。人工智能应用程序会混淆吗?它会混淆商标吗?人工智能应用程序甚至会通过传统的听觉、语音和概念比较商标的方式来评估产品购买,这就是所谓的人工智能黑箱问题吗?人工智能应用程序经常受到个人消费者过去购买决策的影响,而人工智能应用程序做出购买决定或建议的原因有时可能难以理解。在这些情况下,知识产权侵权责任问题也引起了重要的问题。然而,即使人工智能应用程序不做出购买决策,它仍然会影响消费者在做出购买决策时可用的品牌信息。例如,亚马逊 Alexa 平均只向消费者推荐三种产品。它控制着向消费者推荐什么品牌产品,它而不是人类消费者掌握着所有的品牌信息。然而,人工智能对购买过程的影响必须放在历史背景中来看待。人工智能的兴起是新的,但并非史无前例。现代商标法诞生于十九世纪,并发展到现代。然而,在此期间,购买过程并非一成不变,而是发生了变化。我们只需看看从传统的十九世纪“店主”购买产品模式到二十世纪二十年代超市发明的变化,从互联网和社交媒体的兴起到人工智能的兴起。商标法已经适应并发生了变化,实际上可以说是适应性最强的知识产权法形式。例如,关于人工智能应用程序的责任问题,我们已经可以从关键词广告的案例中得到指导,例如谷歌法国,它是随着互联网购物的兴起而发展起来的。如果购买过程中的“参与者”如人工智能应用程序在购买决策/过程中扮演更被动的角色,则人工智能应用程序提供商不太可能被追究责任,如果人工智能应用程序在购买决策中扮演更积极的角色,并且可以说人工智能提供商在购买决策中强烈影响消费者,则更有可能发现责任。商标法已经适应了购买过程的变化,并且它将再次适应。HGF 合伙人兼特许商标律师 Lee Curtis
ring_info打印电子束电流,Wiggler磁场,实时时间和电子束位置WA_DATENFILE创建包含所有电动机位置的数据文件,并在Laser_off开关激光器上的Electron Beam Current laser_on Switch laser laser of z_adjust z_adjust z调整Z调整量命令命令文件命令文件包含所有命令。可以使用基本编辑器(例如Kate)创建它们,并将由命令“ Dofile”启动。典型形式:MCAROI值集合感兴趣的区域到能量范围Newfile Path/命令文件的数据文件umv Motorname位置移动电动机... ond ... ond ... ofd ... ofd ... of the ... ofd ...并在存储printf(“ xyz \ n”)时显示数据,wa_datenfile print wa_datenfile print wa_datenfile print wa_datenfile保存所有电动机位置和电子光束McAaCq time mc ca ca ca ca ca ca ca
确保电传操纵系统安全性的方法:空客 VS 波音 Andrew J. Kornecki、Kimberley Hall 安柏瑞德航空大学 美国佛罗里达州代托纳比奇 < kornecka@erau.edu > 摘要 电传操纵 (FBW) 是一种飞行控制系统,使用计算机和相对较轻的电线来取代飞行员驾驶舱控制装置和移动表面之间的传统直接机械连接。FBW 系统已用于制导导弹,随后用于军用飞机。商用飞机实施延迟是由于需要时间开发适当的故障生存技术,以提供足够的安全性、可靠性和可用性。软件生成对高完整性数字 FBW 系统的总工程开发成本贡献很大。讨论了与软件和冗余技术相关的问题。空中客车和波音等领先的商用飞机制造商在其民用客机中采用了 FBW 控制。本文介绍了他们的方法、控制理念的差异以及实现航空公司运营所必需的同等安全保障水平的实施情况。关键词 航空电子、软件工程、软件安全、容错 1.简介 电传操纵 (FBW) 系统是一种基于计算机的飞行控制系统,它用更轻的电线取代了飞行员驾驶舱控制装置和移动表面之间的机械连接。飞行员通过控制飞机机翼和尾翼上的可移动部件(称为飞行控制面)来操纵飞机。计算机将飞行员的命令转换为传送到控制面的电脉冲。空中客车和波音在其商用飞机中利用 FBW 的方式略有不同。本文的目的是比较商用飞机制造商在实施 FBW 系统时使用的不同方法。本文试图从系统和软件工程设计决策的角度来探讨系统的可用性和安全性。