合成微生物群落(Syncom)生物传感器是一种有前途的技术,用于检测和响应环境线索和靶分子。Syncom生物传感器使用工程的微生物来创建一个更复杂和多样化的传感系统,从而使它们能够以增强的灵敏度和准确性对刺激做出反应。在这里,我们给出了Syncom生物传感器的定义,超越了他们的建筑工作,并讨论了当前的生物传感技术。我们还强调了开发和优化Syncom生物传感器以及在农业和食品经营中的潜在应用,生物治疗发展,家庭感应,城市和环境监测以及One Health Foundation的挑战和未来。我们认为,Syncom生物传感器可以实时和遥控的方式使用,以感知不断动态的环境的混乱。
阴道菌群对女性健康有影响。然而,持续几个月的高分辨率随访研究显然很少,这是将长期动态和与人口统计和行为协变量的关联询问所必需的。在这里,我们提出了一项高分辨率的纵向队列研究,对125名女性进行了研究,随后持续时间为8.6个月,中位数为11个样本,每个女性收集了11个样本。使用层次的贝叶斯马尔可夫模型,我们表征了阴道微生物群落持续性和过渡的模式,同时估计了16个协变量的影响,并在女性中量化了个体变异性。我们表明,“最佳”(社区状态类型(CST)I,II和V)和“次优”(CST III)社区随着时间的推移比“非最佳”(CST IV)(CST IV)更稳定。此外,我们发现一些协变量(最著名的是饮酒)影响了从一个CST转移到另一个CST的可能性。我们进行了反事实模拟,以确认关键协变量的改变(例如饮酒)可以影响人群中不同的微生物群落的普遍性。最后,我们的分析表明,有一种相对通道的途径导致阴道微生物群落恶化,而恢复途径可以高度个性化。除了在一年多以来对阴道菌群动力学的第一个见解之一提供,我们的研究还展示了分层贝叶斯马尔可夫模型在具有许多协变量的临床队列数据中的新应用。我们的发现为在阴道环境中对微生物动力学的机械理解以及新型预防和治疗策略的发展铺平了道路,以改善阴道健康。
耐甲氧西林金黄色葡萄球菌(MRSA)通常通过直接接触或受污染的物体在住院的患者之间传播。然而,MRSA的家庭传播动态尚不清楚,对有效预防构成了挑战。这项研究评估了至少17个月的无症状携带者中MRSA殖民地的持续性,并检查了家庭内传播的潜力。我们对七个家庭进行了家庭访问,每个家庭至少有一个MRSA-Colonized成员,以收集所有家庭成员的鼻拭子。通过培养,抗菌易感性测试和PCR确定分离株的表型和基因型谱。我们将这些新样本与最新研究的先前样品进行了比较,涉及相同个体,以评估MRSA的自发清除率。总共收集了25个样本,其中56%(14)个确定为金黄色葡萄球菌,而44%(11)为非S。金黄色在金黄色葡萄球菌分离株中,有四个是MRSA。我们观察到MRSA在六个原始案例中的自发清除率。出乎意料的是,MRSA的家庭内传播有限,尽管所有具有MRSA殖民的家庭至少有一个患有皮肤病史的成员。在殖民地持续存在的家庭中,一个人反复出现皮肤脓肿,这表明可能与持续定殖的联系有联系。
生物多样性损失和气候变化是对生态系统功能和稳定性最令人震惊的威胁之一。但是,这些因素通常是分别研究的,忽略了物种灭绝与生态系统气候变化之间的潜在相互作用。在这里,我们评估了不同温度方案如何影响微生物多样性与生态系统功能之间的关系,从碳(C)循环功能的温度敏感性方面。我们假设更复杂的群落在两个温度状态下都促进了C循环功能的稳定性。我们没有观察到所有C周期过程对不同复杂性社区内温度升高的无处不在。虽然生长稳定,并且在复杂性水平上的温度升高时,呼吸率在较低的复杂性下比高温下的高复杂度更高。碳的使用效率既整合了生长和呼吸,往往随温度较低的温度而降低。共同的结果表明,在气候变化的情况下,社区复杂性对于维持C循环热反应的重要性。
fi g u r e 5在草食动物粪便中不同模式的真菌群落的功能表征。(a)在营养模式下相对丰度(> 1%)。(b)公会模式下预测的功能分布的组成; (c)在公会模式下对应于功能组的家庭层面上特定主要的真菌分类单元的相对丰度(第一级标题是真菌物种及其所在的类别;次级标题是与真菌相对应的官能团)。不同的字母表示在p <.05级别(n = 6)的显着差异;表S14列出了真菌公会模式下的比较统计结果;表S15列出了确切的p值。
背景:抑郁综合征(DS)和认知障碍(CI)与不成功的衰老有关。但是,对喀麦隆知之甚少。本研究旨在评估喀麦隆老年人中与DS和CI相关的因素。方法:为这项横断面研究选择了599名年龄≥60岁的人的代表性样本。社会人口统计学和健康数据。ds和CI。ROSOW移动量表,日常生活活动(ADL)和日常生活(IADL)量表的乐器活动用于评估功能能力。CHI-2,ANOVA和多元回归分析,以评估与DS和CI相关的因素。统计显着性的阈值为5%。结果:平均年龄为68.9±7.2岁,性别比m/ f = 0.93,体重为68.5±14.7 kg。ds影响了14.5%的人口,CI为21.4%。在多变量分析中,DS与男性性别(OR)= 1.7 [95%置信区间(CI):1.1 - 2.7],P = 0.031)和不活动(OR = 1.7 [95%CI:1.0 - 3.0],P = 0.043)。结论:相关的因素表明,与无活动的不活动作斗争并鼓励早期和长期教育以防止老年人中的DS和/或CI。ci与缺乏教育(OR = 6.5 [95%CI:3.5 - 12.2],p <0.001),无活动性(OR = 5.3 [95%CI:1.6 - 17.9],p = 0.008),p = 0.008),单个(OR = 3.7 [95%CI:1.2 - 11.3],p = 0.0%,p = 0.05%,或3.3%,或civi:6或= 3.3%或civi:1.6或civi:1。1.1.1.19(或civi:1。1.1y)(或civi:1。1.1y)(或civi off off offof offof offof。 - 6.5],p = 0.001),并且与无IADL(OR = 0.3 [95%CI:0.2 - 0.6],P = 0.001)和ADL残疾(OR = 0.5 [95%CI:0.2 - 0.9],P = 0.032)。
香蕉基因组中心为基因组组件,注释以及可用于香蕉和香蕉亲属的广泛相关的OMICS提供了集中访问。实施了一系列工具和独特的接口,以利用香蕉中的基因组学潜力,利用比较分析的力量,同时认识到数据集之间的差异。除了BLAST和JBROWSE基因组浏览器等有效的基因组工具外,其他接口还可以使高级基因搜索和基因家族分析(包括多种比对和系统发育)。同步观察者可以比较染色体规模组件之间的基因组结构。接口。跨越香蕉多样性的变体目录可用于探索,过滤和导出到各种软件。此外,我们实施了新的方法来以图形方式探索pangenomes中的基因存在 - 以及基因组血统的培养香蕉。此外,为了指导社区以后的测序工作,我们为基因座标签的命名法提供了建议,并提供了精心策划的公共基因组资源列表(集会,重新陈述,高密度基因分型)和即将到来的资源(即将到来的资源)(计划,持续或持续的公众。香蕉基因组中心旨在支持基础,翻译和应用研究的香蕉科学界,并可以在https://banaana-genome-hub.southgreen.fr上访问。
摘要生态系统服务部分源自生物学多样性,是对人类社会的基本支持。但是,人类活动对生物多样性造成了损害,最终危害了这些关键的生态系统服务。停止自然损失并减轻这些影响需要全面的生物多样性分配数据,这是实施Kunming-Montreal全球生物多样性框架的要求。为了有效地从公众那里收集物种观察,我们在日本启动了“生物群体”移动应用程序。通过采用物种识别算法和游戏化元素,该应用程序自2019年推出以来已收集> 600万的观察结果。但是,社区采购的数据经常表现出空间和分类偏见。物种分布模型(SDMS)在适应这种偏见的同时推断物种分布。我们研究了Biome数据的质量以及合并数据如何影响SDM的性能。物种鉴定精度超过鸟类,爬行动物,哺乳动物和两栖动物的95%,但是种子植物,软体动物和鱼类得分低于90%。对日本的132种陆地动植物的分布进行了建模,并通过将我们的数据纳入传统的调查数据来提高其准确性。对于濒危物种,传统的调查数据需要> 2,000个记录以构建准确的模型(Boyce指数≥0.9),尽管将两个数据源混合在一起时仅需要CA.300记录。独特的数据分布可能解释了这一进步:生物群落数据统一涵盖了城市 - 自然梯度,而传统数据则偏向自然区域。将多个数据源结合起来提供了对日本物种分布的见解,有助于保护区域名称和生态系统服务评估。提供一个平台来积累社区来源的分布数据和改进数据处理协议,不仅有助于保存自然生态系统,还将有助于检测物种分布变化和测试生态理论。
在连续种植多年后,农作物通常会受到生长抑制作用,这严重影响了其产量。在农业生产中,土壤熏蒸可以有效地减轻植物的生物压力。然而,对土壤熏蒸变化和植物反应的微生物群之间的关系,以及它们的存在是否对植物做出了有益的贡献,尚不清楚。我们通过影响微生物来探索土壤熏蒸的机理,从而促进植物生长。结果表明,dazomet的治疗显着缓解了烟草的生长迟缓,而这种差异在烟草的繁荣时期最为明显,当时植物高度和叶子面积分别增加了3.33次和3.24次。此外,地上组织的生长优势与根部优势显着相关(p <0.05)。同时,我们发现dazomet处理显着增加了与根相关的大量微生物基团,例如g_pedobacter,g_microbacterium和g_brevundimonas。结构方程建模的结果表明,与所应用的dazomet量正相关的微生物群落,并且与根部正相关(p <0.05)是有助于烟草生长优势的重要因素。总体而言,这项研究的发现对于增强我们通过熏蒸的土壤修复的理解具有重要意义,并且可能对dazomet熏蒸的实际应用具有很大的影响。
地球上的生命取决于微观连接。很长一段时间以来,我们对微生物世界的理解与疾病和食物应用有关。可能是因为它们是看不见的,除非影响人类的生活,否则不会认真考虑微生物。在20世纪末,分子和遗传工具的出现揭示了微生物世界的新型视野,揭示了在所有生态系统中微生物的普遍性和世界性分布,包括最极端的自然环境,以及包括较高生物体在内的较高生物体,包括人类在内的1,2。它们的高浓度和与广泛功能能力相关的大量多样性使他们成为我们星球上的重要参与者。他们提供了三分之二的氧气活生物体呼吸,并且在所有元素的回收中起着至关重要的作用。微生物还通过促进消化,产生维生素K,促进免疫系统的发展以及对有害化学物质的排毒3来使人类健康和福祉受益。3。作为它们生产的无数分子以生存或繁殖的非常有效的化学厂,它们也是用于工业,生物技术或治疗应用的创新生物活性分子的来源,包括对皮肤疾病的治疗4,5。