引言帕金森氏病是一种神经系统疾病,是脑部中脑中多巴胺水平降低的主要原因,或者是腹中脑中脑中的nigra pars compacta。帕金森氏病是一种影响超过1000万人的全球疾病,这种疾病主要由震颤引起。Bradykinesia。刚性,因此引发运动的困难。帕金森氏症最初是由詹姆斯·帕金森(James Parkinson)于1817年发现为神经系统综合症的。帕金森氏病是多巴胺能神经元的丧失,减少了在脑部障碍中释放的多巴胺作为麻醉或摇动麻痹。帕金森氏病在19世纪后来由Jean-Martin Charcot创造。通过合成药物和草药药物治疗神经系统疾病,但是与合成医学相比,草药药物的副作用较少,如今的脑疾病疾病在世界上广泛传播的100万人受到帕金森氏症的影响。如果将来继续有1,500万人,则可以安全地使用从Ashwagandha(Withania Somnifera)的Herb的根部获得的草药。
在本研究中,我们基于从狨猴大脑中收集的局部场电位数据,提出了一种与帕金森病 (PD) 相关大脑区域的新型生物物理计算模型。帕金森病是一种神经退行性疾病,与黑质致密部多巴胺能神经元的死亡有关,而这会影响大脑基底神经节-丘脑-皮质 (BG-TC) 神经回路的正常动态。尽管该疾病有多种潜在机制,但仍然缺乏对这些机制和分子发病机制的完整描述,而且仍然无治愈方法。为了填补这一空白,人们提出了类似于动物模型中发现的神经生物学方面的计算模型。在我们的模型中,我们执行了一种数据驱动的方法,其中使用差分进化优化一组生物约束参数。进化模型成功地模拟了健康和帕金森狨猴脑数据的单神经元平均放电率和局部场电位的光谱特征。就我们而言,这是
3 NAV NAV NAV NIDHI PUNJABI PATH MALA -8 PACEMAKER PUCEMAKER PUNJABI 4 NAV NIDHI PUNHI PUNJABI VYAKARAN -8 PAPEMAKER PUB PUNJABI 5 PRERAK HINDI PATMALA -8 OMAIRA PABE Viva PUB Science 9 G.K World - 8 Eduline GK 10 I.T Vision Computer - 8 Avartan Computer 11 Maths -8 Ncert Maths 12 Class - 9 th S.No Book Name Publishers SUBJECT 1 BEEHIVE ENGLISH MCB - 9 NCERT English 2 Movement Literature - 9 NCERT English 3 Hindi Sparsh - 9 NCERT Hindi 4 Hindi Sanchain - 9 Ncert Hindi 5 History - 9 Ncert History 6 Geography - 9 NCERT地理7经济学-9 NCERT经济学8政治学-9 NCERT政治学9教科书 - 9 NCERT科学10文本数学11 Sahit Mala Vangi -9 Pacemaker Pub Punjabi
帕金森氏病主要是由黑质PARS Comcacta中多巴胺能神经元丧失和α-突触核蛋白蛋白的积累引起的。Though the general consensus is that several factors, such as aging, environmental factors, mitochondrial dysfunction, accumulations of neurotoxic alpha-synuclein, mal functions of the lysosomal and proteasomal protein degradation systems, oxidative stress, and neuro inflammation, are involved in the neurodegeneration process of Parkinson ' s disease, the precise mechanism by which all of these factors被触发仍然未知。通常,神经毒性化合物,例如香替酮,6-羟基多巴胺,1-甲基-4-苯基-1,2,3,6-四氢吡啶(MPTP),1-甲基4-甲基4-苯基4-苯基吡啶吡啶(MPP +)(MPP +),paraquat和paraquin continical inticib inty to paraquins continical inty in cardinical intoinical toclinics to pardinical of pardnical of pardnical of pardnical''科学名称,4-羟基-3-甲氧基酸(C10H10O4),自然发现在谷物,水果,蔬菜和蜜蜂产品中。该物质由于具有抗炎和抗氧化剂的特质而对帕金森氏病具有神经保护作用。本综述详细介绍了帕金森氏病和阿魏酸的神经保护特性,可能有助于防止这种情况。
摘要:氧化应激介导的损伤通常是帕金森氏病(PD)的下游结果,帕金森氏病(PD)的标志是大脑的黑骨术区域内多巴胺能神经元的急剧下降,这构成了患者有症状的运动降低。调节氧化应激水平可能会在预防PD病理学方面采用有益的方法。在这里,我们评估了烟酰胺腺苷磷酸腺嘌呤(NADPH)氧化酶(NOX)抑制剂,这是由Aptabio Theraphators与NOX-1,2和4。利用N27大鼠多巴胺能细胞和C57BL/6小鼠,我们确定了α-核蛋白预先形成的纤维(PFF)诱导的蛋白质聚集的暴露,这是PD病理学的标志。对新颖化合物的体外评估表明,细胞活力的增加并降低了在10 nm最佳浓度下暴露于PFF的细胞毒性,ROS和蛋白质聚集(Thio thio-flavin-t染色)。同时,口服处理在行为测试中缓解了运动率,例如后肢紧握,旋转rot,极点,嵌套和修饰测试,通过减少蛋白质聚集,基于营救的多巴胺能神经元损失。在纹状体和腹中脑区域内抑制NOX-1,2和4,包括Nigra Compacta(SNC)有助于神经保护/恢复效应,使其成为PD的潜在治疗选择。
昼夜节律功能障碍是帕金森病(PD)的标志,在PD患者中已经描述了核心时钟基因BMAL1的表达降低。bmal1是核心昼夜节律函数所必需的,但也具有非节律函数。种系BMAL1缺失会导致小鼠的脑氧化应激和突触丧失,并且会加剧多巴胺能神经变性,以响应毒素MPTP。在这里,我们检查了细胞类型 - 特异性BMAL1缺失对体内多巴胺能神经元活力的影响。我们观察到,BMAL1的全球,产后缺失导致酪氨酸羟化酶 +(Th +)多巴胺能神经元的自发丧失。这不是通过光诱导的行为昼夜节律破坏来复制的,也不是由星形胶质细胞或小胶质细胞特异性BMAL1缺失引起的。然而,泛神经元或神经元特异性BMAL1缺失会导致SNPC中Th +神经元的细胞自主丧失。bmal1缺失并未改变α-突触核蛋白原纤维注射后神经元丧失的百分比,尽管BMAL1 -KO小鼠在基线时的神经元较少。转录组学分析表明,参与氧化磷酸化和帕金森氏病的途径失调。这些发现证明了BMAL1在调节多巴胺能神经元存活中的细胞自主作用,并且可能对PD的神经保护具有重要意义。
帕金森氏病是由黑质Nigra Pars Compacta的多巴胺能神经元的选择性脆弱性和细胞丧失引起的,因此,纹状体多巴胺消耗。在帕金森疾病疗法中,多巴胺的损失是由L-DOPA的给药来抵消的,L-DOPA最初在改善运动节目Symp TOMS方面有效,但随着时间的流逝,L-DOPA诱发的疾病诱发了不可控制的疾病运动的负担。迄今为止,没有有效的运动障碍治疗。多巴胺能和5-羟色胺能系统与内在联系在一起,近年来,在L-多巴巴诱导的发育不良中,已经确立了突触前5-HT1A/B受体的作用。我们假设后突触后的5-羟色胺受体可能发挥作用,并涉及5-HT4受体对运动症状和L-DOPA诱导的运动障碍的调节对帕金森氏病的单侧6-OHDA小鼠模型中的l-dopa诱导的运动障碍。给药67333卢比,一种5-HT4受体部分激动剂,可降低L-DOPA诱导的运动障碍,而不会改变L-Dopa的促动力效应。在背外侧纹状体中,我们发现5-HT4受体主要表达在含D2R的培养基神经元中,并且其表达通过多巴胺消耗和L-DOPA治疗改变。我们进一步表明,5-HT4受体激动剂不仅降低了L-DOPA诱导的运动障碍,而且还可以增强纹状体合理培养基中棘神经元中CAMP-PKA途径的激活。综上所述,我们的发现表明,后突触后5-羟色胺受体5-HT4的激动剂可能是减少L-DOPA诱导的运动障碍的一种新型治疗方法。
缩写:AD,阿尔茨海默氏病; ALS,肌萎缩性侧索硬化症;应用,淀粉样前体蛋白; β,淀粉样β; BACE1,β位点淀粉样蛋白前体蛋白裂解酶1; BBB,血脑屏障; BCRP,乳腺癌抗性蛋白; BPS,双酚; BPA,双酚A; BPAF,双酚AF; BPB,Bisphenol B; BPF,双酚F; BPS,双足醇S; Ca 2 +,钙;猫,过氧化氢酶;中枢神经系统,中枢神经系统;中枢神经系统,皮质神经元; DA,多巴胺; DAT,多巴胺转运蛋白; PYSL2,二氢吡啶酶相关蛋白2; ECHA,欧洲化学局; EDC,内分泌破坏化学物质; ER,雌激素受体; GSK3β,糖原合酶激酶3β; HT-22,海马细胞系; IR,胰岛素受体; IRS,胰岛素受体底物; MAP2,微管相关蛋白2; MDA,疟原虫dehyde; MS,多发性硬化症; NFT,神经纤维纠缠; NOS,一氧化氮合酶; PD,帕金森氏病; PDI,蛋白二硫异构酶; RNase,还原核糖核酸酶; ROS,活性氧; SN,黑底尼格拉; SNC,黑质Nigra pars commacta;草皮,超氧化物歧化酶; SPS,老年斑块; SVHC,非常关注的实质; Th,酪氨酸羟化酶; TK,酪氨酸激酶; α -syn,α-苏核蛋白。*通讯作者。电子邮件地址:lipinglu@hznu.edu.cn(L. lu)。电子邮件地址:lipinglu@hznu.edu.cn(L. lu)。
阿尔茨海默病 (AD) 是一种具有挑战性的神经退行性疾病,需要早期诊断和干预。这项研究利用机器学习 (ML) 和图论指标,这些指标源自静息态功能磁共振成像 (rs-fMRI) 数据来预测 AD。使用西南大学成人寿命数据集 (SALD,年龄 21-76 岁) 和开放获取系列成像研究 (OASIS,年龄 64-95 岁) 数据集(包含 112 名参与者),开发了各种 ML 模型用于 AD 预测。该研究确定了全面了解 AD 中的大脑网络拓扑和功能连接的关键特征。通过 5 倍交叉验证,所有模型都表现出显著的预测能力(准确率在 82-92% 范围内),其中支持向量机模型脱颖而出,准确率达到 92%,表现最佳。本研究表明,根据最重要的判别特征确定的前 13 个区域已经失去了与丘脑的显着联系。与健康成年人和老年人相比,AD 患者的黑质、网状部、黑质、致密部和伏隔核的功能连接强度持续下降。本研究结果与早期采用各种神经成像技术的研究结果相吻合。这项研究表明,将 ML、图论和 rs-fMRI 分析相结合的综合方法在 AD 预测中具有转化潜力,为更准确的诊断和早期预测 AD 提供了潜在的生物标记。
多巴胺 (DA) 神经元活动和信号传导在调节控制各种行为输出的大脑回路中起着至关重要的作用,包括(但不限于)动机、运动控制、奖励处理和认知 (1–3)。中脑 DA 神经元大致可细分为两个主要核,即黑质致密部 (SNc) 和腹侧被盖区 (VTA)。SNc 的 DA 神经元投射到背侧纹状体 (DS),而 VTA 的 DA 神经元投射到伏隔核 (NAc) 和皮质区域 (4)。此外,DS 和 NAc 可进一步细分为具有不同皮质和丘脑输入的解剖区域。例如,外侧 DS 接收来自运动皮质的大量输入,并大量参与运动学习、习惯行为和动作选择 (5–9)。相比之下,内侧 DS 接收来自体感皮层的输入,可以在塑造目标导向行为、强迫行为和技能学习方面发挥关键作用(10-12)。同样,NAc 可以细分为核心和外壳区域,具有不同的投射模式和输入,与动机行为、显着性和奖励处理有关(13-15)。DA 能够调节如此广泛和多样化的行为输出,至少部分归因于 DA 神经元亚群整合到仅涉及这些行为结果的子集的大脑回路中。与 DA 在调节这些回路中的关键作用一致,DA 信号失调被认为在许多疾病中起着关键作用,包括精神分裂症、抑郁症、物质使用障碍和帕金森病。