可持续,材料必须丰富、廉价且无毒。然而,毒性并不是唯一的安全隐患。媒体经常报道因锂离子电池易燃而发生的事故。这些设备的易燃性通常与非水电解质有关。电解质也导致了毒性和高成本,部分原因是使用了氟化盐。[2–5] 解决这些缺陷对于钠离子电池尤为重要,因为可持续性和安全性至关重要。幸运的是,人们正在努力解决电池中使用的电解质的易燃性。减轻可燃性的一种常用策略是使用有机磷化合物作为电解质溶剂。[6–12] 有机磷化合物是一类常见的阻燃剂,用于各种应用。[13] 然而,其中一些化合物对环境和健康有负面影响。[14,15]
摘要使用可以在宿主植物中复制并系统地移动的病毒载体以传递细菌CRISPR组件,从而可以在整个植物水平上进行基因组编辑,并避免对劳动力密集型稳定转化的要求。但是,这种方法通常依赖于先前转化的植物,这些植物稳定地表达了CRISPR-CAS核酸酶。在这里,我们描述了使用烟草eTCH病毒(TEV; PotyVirus属)和马铃薯病毒X(PVX; PVX;属Potexvirus)得出的两个兼容的RNA病毒载体的成功无DNA的基因组编辑,这些病毒是在同一细胞中复制的。TEV和PVX载体分别表达CAS12A核酸酶和相应的指导RNA。这种新型的两场媒介系统改善了植物中无病毒诱导的基因组编辑的工具箱,并将促进繁殖更多营养,耐药性和生产性作物的努力。
我们的HB G-Makassar直接编辑策略显示了电穿孔后CD34 +细胞的单个碱基的高编辑效率,这是通过红细胞分化持续的。我们证明,在较高的编辑效率下,可以通过将HBS球蛋白水平降低到<15%,并且降低了暴露于低氧条件的细胞的体外疾病,可以实现高双重编辑。通过对纯化的重组Makassar蛋白的全面评估,我们能够证明正常的生化和生物物理特性,与Makassar Globin一致,与正常的血红蛋白功能兼容。我们进一步证明了麦卡萨球蛋白不会在体外聚合,并且共表达的麦卡萨尔球蛋白和镰状球蛋白具有类似于镰状性状细胞的特性。最后,我们脱离了某种低频,非同义旁观者的编辑,该编辑由目标基础编辑产生。再加上自体干细胞移植,将病因镰状细胞突变直接编辑为天然发生的,无症状的HB G-makassar是SCD患者的有希望的新治疗范式。
。CC-BY-NC-ND 4.0 国际许可,根据 提供(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者,此版本于 2021 年 4 月 19 日发布。;https://doi.org/10.1101/2021.04.19.440450 doi:bioRxiv 预印本
摘要:本文重点介绍一种新型铜镍厚膜电阻浆料,该浆料专为实现低欧姆功率电阻而设计和实验开发。这种铜镍浆料设计用于厚印刷铜导体,与传统的钌基厚膜电阻浆料相比,可在氮气保护气氛中烧结。铜镍浆料由铜和镍微粒、玻璃粘合剂颗粒和有机溶剂组合制成,并针对在氮气气氛中烧结进行了优化。本文详细介绍了铜镍浆料的成分及其热性能(通过同步热分析验证)、干燥和烧结铜镍膜的形态描述以及最终印刷电阻的电参数。通过电子显微镜和元素分布分析证明,铜和镍微粒在烧结过程中扩散在一起并形成均匀的铜镍合金膜。该薄膜具有低电阻温度系数 ± 45 × 0 − 6 K − 1 和低薄层电阻值 45 m Ω /square。经验证,配制的铜镍浆料可氮烧,并且与厚印刷铜浆料具有良好的兼容性。这种组合允许实现直接集成低欧姆电阻器的功率基板。
研究了功率 AlGaN/GaN HEMT 系列的击穿失效机制。这些器件采用市售的 MMIC/RF 技术与半绝缘 SiC 衬底制造。在 425 K 下进行 10 分钟热退火后,对晶体管进行了随温度变化的电气特性测量。发现没有场板的器件的击穿性能下降,负温度系数为 0.113 V/K。还发现击穿电压是栅极长度的减函数。在漏极电压应力测试期间,栅极电流与漏极电流同时增加。这表明从栅极到 2-DEG 区域的直接漏电流路径的可能性很大。漏电流是由原生和生成的陷阱/缺陷主导的栅极隧穿以及从栅极注入到沟道的热电子共同造成的。带场板的器件击穿电压从 40 V(无场板)提高到 138 V,负温度系数更低。对于场板长度为 1.6 l m 的器件,温度系数为 0.065 V/K。2011 Elsevier Ltd. 保留所有权利。
*Corpsontding作者:Michele Ortolani,生命中心Nano&Neuro Science,意大利理工学院,Viale Regina Elena 291,00161,意大利罗马;和物理系“ Sapienza”罗马大学,Piazzale Aldo Moro 2,00185,意大利罗马,电子邮件:michele.ortolani@roma@roma1.infn.it。https://orcid.org/0000-0002-7203-5355 Elena运动,Enrico Talamas Simola,Gaspare的Luciana和大学科学系Monica de Seta;在罗马研究中,Viale G. Marconi 446,罗马00146,意大利,电子邮件:elena.campagna@uniroma3.it(E。竞选),Enrico.talamassimola@uniroma@uniroma@uniroma3.it(E。Talamas Simola)。https://orcid.org/0000-0001-7121-8806(E.广告系列)。 https://orcid.org/0000-0001-5468-6712(E. Talamas Simola)Tommaso Venanzi,意大利技术研究所,意大利技术研究所,Viale Regina Elena 291,00161 Rome,00161 ROME,00161 ROME,EMMAN,EMMAN:和莱昂内塔·巴尔达萨尔(Leonetta Baldassarre Technologiepark 25,Frankfurt,(Oder)15236,德国,电子邮件:Cedric.corley@esrf.fr Giuseppe Nicotra,微电子和微型系统研究所(CNR- IM)(CNR- IM),VIII STRADA 5,VIII STRADA 5,CATANIA 95121,ITALY GIOVAND GIOVANDIALY GIOVANCENT CAPINES,分校在罗马研究中,意大利罗马00146的Viale G. Marconi 446;和IHP-LeibnizInstitutFür创新的Mikroelelektronik,IM Technologiepark 25,Frankfurt(Oder)15236,德国Michele Michele Virgilio物理学部”,E。https://orcid.org/0000-0001-7121-8806(E.广告系列)。https://orcid.org/0000-0001-5468-6712(E. Talamas Simola)Tommaso Venanzi,意大利技术研究所,意大利技术研究所,Viale Regina Elena 291,00161 Rome,00161 ROME,00161 ROME,EMMAN,EMMAN:和莱昂内塔·巴尔达萨尔(Leonetta Baldassarre Technologiepark 25,Frankfurt,(Oder)15236,德国,电子邮件:Cedric.corley@esrf.fr Giuseppe Nicotra,微电子和微型系统研究所(CNR- IM)(CNR- IM),VIII STRADA 5,VIII STRADA 5,CATANIA 95121,ITALY GIOVAND GIOVANDIALY GIOVANCENT CAPINES,分校在罗马研究中,意大利罗马00146的Viale G. Marconi 446;和IHP-LeibnizInstitutFür创新的Mikroelelektronik,IM Technologiepark 25,Frankfurt(Oder)15236,德国Michele Michele Virgilio物理学部”,E。
* 通讯作者:Michele Ortolani,意大利理工学院生命纳米与神经科学中心,Viale Regina Elena 291,00161 罗马,意大利;以及罗马大学物理系,Piazzale Aldo Moro 2, 00185 Rome, Italy,电子邮件:michele.ortolani@roma1.infn.it。 https://orcid.org/0000-0002-7203-5355 Elena Campagna、Enrico Talamas Simola、Luciana Di Gaspare 和 Monica De Seta,大学科学系;罗马第三研究学院,Viale G. Marconi 446,罗马 00146,意大利,电子邮件:elena.campagna@uniroma3.it(E. Campagna),enrico.talamassimola@uniroma3.it(E. Talamas Simola)。 https://orcid.org/0000-0001-7121-8806(E. Campagna)。 https://orcid.org/0000-0001-5468-6712 (E. Talamas Simola) Tommaso Venanzi,意大利理工学院生命纳米与神经科学中心,Viale Regina Elena 291, 00161 罗马,意大利,电子邮件:tommaso.venanzi@uniroma1.it Fritz Berkmann 和 Leonetta Baldassarre,罗马大学物理系,Piazzale Aldo Moro 2, 00185 罗马,意大利,电子邮件:fritz.berkmann@uniroma1.it (F. Berkmann) Cedric Corley-Wiciak,IHP-Leibniz 创新微电子研究所,Im Technologiepark 25,法兰克福(奥得河畔)15236,德国,电子邮件:cedric.corley@esrf.fr Giuseppe Nicotra,微电子与微系统研究所(CNR- IMM),VIII Strada 5,卡塔尼亚 95121,意大利 Giovanni Capellini,大学科学系;罗马第三研究学院,Viale G. Marconi 446,罗马 00146,意大利;以及 IHP-Leibniz 创新微电子研究所,Im Technologiepark 25,法兰克福(奥得河畔)15236,德国 Michele Virgilio,物理学系“E.费米”,大学;比萨,Largo Pontecorvo 3,比萨 56127,意大利,电子邮件:michele.virgilio@unipi.it
* 通讯作者:Michele Ortolani,意大利理工学院生命纳米与神经科学中心,Viale Regina Elena 291,00161 罗马,意大利;以及罗马大学物理系,Piazzale Aldo Moro 2, 00185 Rome, Italy,电子邮件:michele.ortolani@roma1.infn.it。 https://orcid.org/0000-0002-7203-5355 Elena Campagna、Enrico Talamas Simola、Luciana Di Gaspare 和 Monica De Seta,大学科学系;罗马第三研究学院,Viale G. Marconi 446,罗马 00146,意大利,电子邮件:elena.campagna@uniroma3.it(E. Campagna),enrico.talamassimola@uniroma3.it(E. Talamas Simola)。 https://orcid.org/0000-0001-7121-8806(E. Campagna)。 https://orcid.org/0000-0001-5468-6712 (E. Talamas Simola) Tommaso Venanzi,意大利理工学院生命纳米与神经科学中心,Viale Regina Elena 291, 00161 罗马,意大利,电子邮件:tommaso.venanzi@uniroma1.it Fritz Berkmann 和 Leonetta Baldassarre,罗马大学物理系,Piazzale Aldo Moro 2, 00185 罗马,意大利,电子邮件:fritz.berkmann@uniroma1.it (F. Berkmann) Cedric Corley-Wiciak,IHP-Leibniz 创新微电子研究所,Im Technologiepark 25,法兰克福(奥得河畔)15236,德国,电子邮件:cedric.corley@esrf.fr Giuseppe Nicotra,微电子与微系统研究所(CNR- IMM),VIII Strada 5,卡塔尼亚 95121,意大利 Giovanni Capellini,大学科学系;罗马第三研究学院,Viale G. Marconi 446,罗马 00146,意大利;以及 IHP-Leibniz 创新微电子研究所,Im Technologiepark 25,法兰克福(奥得河畔)15236,德国 Michele Virgilio,物理学系“E.费米”,大学;比萨,Largo Pontecorvo 3,比萨 56127,意大利,电子邮件:michele.virgilio@unipi.it
气候兼容和可持续的能源资源扩张是一项重大的全球挑战。资源不足、政策不连贯、法律和体制框架不连贯的发展中国家必须努力实现可持续发展目标 (SDG) 设定的目标,同时跟踪温室气体 (GHG) 减排的国家自主贡献。包容性治理相当复杂,因为非正式和正式系统、基于规则和基于权利的方法以及国家和地方情景的安排与方法限制相互作用。在此背景下,本研究旨在以巴基斯坦能源部门为例,制定一个用于评估气候兼容发展 (CCD) 的治理指数。该研究采用两步法来开发和验证评估治理充分性的方法框架。在第一步中,通过利益相关者的参与,使用原则 (CP-1)、标准 (09) 和 43 个指标 (PCI) 开发了一个多元分析模型。在第二步中,通过将多标准决策分析方法与数据集的统计分析相结合来部署该模型。数据是通过由所有 43 项指标组成的结构化评分矩阵从联邦和省会城市以及 10 个地区收集的。样本人群基于关键线人访谈(340 人)和专家(17 人),他们通过联邦、省和地区级别的焦点小组讨论参与其中。受访者被要求根据比率量表对每个指标进行评分,然后汇总以得出治理指数得分。研究结果表明,巴基斯坦各级选区能源部门缺乏针对气候兼容发展的先发制人和全面治理。需要制定连贯、包容的政策以及法律和体制框架。本研究结果证实了《联合国 2020 年可持续发展目标报告》的调查结果,即实现可持续能源目标的努力尚未达到规模,并强调需要加快努力和制定可再生能源相关治理框架,以实现气候兼容和可持续发展目标。