玻璃纤维增强复合材料 (GFRC) 在现代生活中无处不在。在任何时候,人们可能都站在 GFRC 组件 20 英尺范围内,无论是汽车、船、风力涡轮机还是住宅复合甲板。尽管它们无处不在,但目前处理使用寿命结束时的 GFRC 的方法并不理想。这些复合材料通常最终进入垃圾填埋场,占用大量空间并浪费了在新产品中重复使用这些材料的潜力。近年来,由于社交媒体平台的发展,人们对这一问题的关注度显著提高。风力涡轮机叶片在垃圾填埋场中广为流传的照片是可再生能源产生的罕见垃圾的缩影,也是试图为实际问题寻找真正解决方案的行业的挫折和创新的缩影。如果我们希望继续使用 GFRC,短期内需要采取权宜之计,例如将复合材料倾倒在垃圾填埋场或将废物用作水泥窑的替代燃料。但从长远来看,这些选择并不能为报废复合材料提供生态甚至人道主义负责的解决方案。2019 年,美国能源部向 Carbon Rivers(田纳西州诺克斯维尔)提供了一项小企业创新研究补助金 (SBIR),以探索复合材料循环经济的解决方案,主要关注风力涡轮机叶片。该公司成立于 2017 年,旨在利用
英国国家复合材料中心正与学术界和工业界合作,引领应对这些挑战。英国国家复合材料中心和英国复合材料工业协会于 2020 年发起了一项名为“可持续复合材料伙伴关系”的倡议,旨在确保英国在应对这些挑战方面处于领先地位。我们与英国皇家化学学会的战略计划在我们加速开发净零影响复合材料、工艺和技术的目标中发挥着重要作用。该计划支持建立材料化学能力和促进多学科合作的努力,从而带来投资和融资机会,使化学科学界和复合材料行业都受益。英国有机会在可持续复合材料的开发方面发挥带头作用,但我们现在需要共同采取行动。本报告重点介绍了我们可以采取的重要步骤,以重新定义新一代产品,为所有人创造更绿色、更清洁的未来。
获得“良好”电解质是用金属阳极(LI,NA等)开发新代电池的主要障碍之一。其稳定性,在传导离子(Li +,Na +,…)方面的效率迅速,大量,环境可接受和易于整合到工业制造过程中,这是决定使用材料选择的最重要标准之一。在这篇综述中,我们专门关注GO的不同用途作为电池中电解质的一部分,例如M-金属(M = Li,Na,Zn…)或钒氧化还原流量电池作为商业分离器的化学修饰;作为新分离器的组成部分;作为薄膜和保护层复合;并作为带有聚合物和凝胶电解质的固态电解质复合材料的填充物。对收集的数据的分析允许指出GO在操作电池中相应电解质的稳定性,容量和可环性的效率和相关性。审查还试图确定不同方法的优势和劣势,以突出使用在电解质生产中使用的优势和局限性。
o 汽车、船舶、风车叶片、浴缸和淋浴器、医疗设备、建筑结构、储罐 o 航天器、飞机、直升机、防弹衣、假脚、能源应用、先进汽车和非结构应用(传热、导电性) • FRP 行业(树脂制造商、玻璃纤维制造商、制造机器制造商和制造车间)。 • 讨论先进材料行业(主要航空航天公司、主要零件供应商、次要零件供应商、工具供应商、制造机器制造商、生产材料供应商、纤维制造商、树脂制造商、预浸料公司、核心材料制造商、纤维编织商和预制件制造商)。
可持续性目前是材料,产品开发和应用开发的主要要求。“可持续生物基础材料:生物医学和工程应用”的书提供了与基于生物的材料有关的多种知识,包括来源,合成和财产。基于生物的聚合物合成,属性和应用。本书专注于基于生物的主要材料,例如纤维素,壳聚糖,丝绸和相关的制造技术和应用。此外,文本还显示了基于生物的材料的工程和生物应用,这将彻底,清晰地显示出读者的思想,以发现和将新报告的技术转化为产品和服务。本书将对基于生物材料的研究生和研究生,工程师,技术人员,医生和研究人员提供帮助和有用。第1-6章全面包含了与基于生物的材料有关的更新信息。生物医学应用,例如矫形器,药物递送,组织工程,可吸收缝合线和传感器。基于燃料电池,能源存储和包装等生物基材料的高级应用是与第12-14章中最近作品的确切描述的。除了在第14-16章中讨论了生物基材料作为生物炼油厂,生物润滑剂,膜和吸附剂的先驱的重要性和应用。它包含有关高级生物材料及其制造技术的细节。文本解决了基于生物材料的研究中合适的数学建模和仿真的重要性。它为读者提供了深入的知识,以便在研究实验室和行业中实施的高级材料和制造技术的帮助,以更轻松,快速,快速,可靠的方式来理解矫形器,牙齿植入物,伤口愈合,抗菌,生物相容性问题。本书适合广泛的读者,包括学者,从业人员,研究生以及在生物医学领域工作的研究人员。
这项工作是在都柏林大学学院近六个月的研究成果。它包括对内部有钢纤维和无钢纤维的 CFRP 进行的疲劳测试。提出了在 CFRP 内部插入不同纤维材料层的想法,以提高断裂韧性,尤其是分层行为,这是导致失效的机制之一。这些材料样品在之前的研究项目中进行了静态测试,UCD 的团队也有兴趣在疲劳征求下测试它们,以比较结果和行为。研究 CFRP 是因为它可以应用于航空航天和汽车领域,因此人们对发现它在周期性力下的表现非常感兴趣。第一次疲劳测试后,再次对样品进行疲劳测试,以查看它们如何响应第二个周期性载荷。重复疲劳试验是当今备受关注的研究,因为它可以更好地表征材料,并可以模拟材料寿命期间发生的真实现象。为了进行实验,需要制定标准和规则来规范程序并获得正确的结果。从数据分析可以看出,就像在静态试验中发生的那样,纤维可以改善材料的行为并提高断裂韧性。作为未来的工作,建议继续研究这些材料的疲劳,特别是重复疲劳试验,因为有必要找到新的标准,以便更好地描述和理解样品对请求的反应。
时间表一览。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.2–3 从希尔顿酒店到海洋中心的路线。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3 希尔顿代托纳海滩海滨度假村平面图。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。4 位全体发言者。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。5 个特别活动。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。6 展览平面图和展位信息。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。研讨会的 7 场技术会议。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。8–11 研讨会。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。12–13 赞助商。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.14 呈现作者列表。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。15–21
纤维增强塑料(或复合材料)由于具有高的特异性刚度和强度而广泛用于许多高级工程结构中。复合材料的主要缺点是它们对内部伤害特征的敏感性。特别是对于层压板,一个小的冲击事件通常会导致几乎看不见的冲击损害(BVID),这可能会影响复合材料的结构完整性。在过去的几十年中,已经开发了和提出了几种非破坏性测试(NDT)方法,以便以有效的方式检测和评估BVID。在这项研究中,对复合材料中的几种最先进的NDT方法进行了比较实验分析(有关几个示例,请参见图1)。在此贡献中研究了以下方法:•使用传输和反射(动态时门控)信号进行超声C扫描•使用平面外和平面外两极化振动同时使用局部缺陷振动LDR•低功率振动振动感电振动vt使用单声音振动以及宽带振动,以及宽带振动,以及宽带振动,以及宽带振动,以及宽带技术(care),以及宽带技术(car)。至ASTM D7136)通过低速度下降重量为6.3 J,导致BVID。对复合材料中对NDT技术的机会和(当前的)局限性进行了批判性研究。这涉及对缺陷可检测性,缺陷大小和缺陷深度估计的评估。