热塑性树脂,有时称为工程塑料,包括一些聚酯、聚醚酰亚胺、聚酰胺酰亚胺、聚苯硫醚、聚醚醚酮 (PEEK) 和液晶聚合物。它们由长而离散的分子组成,在加工温度下熔化为粘稠液体,通常为 500” 至 700” F (260° 至 3710 C),成型后冷却为无定形、半结晶或结晶固体。结晶度对最终基质性能有很大影响。与热固性树脂的固化过程不同,热塑性塑料的加工是可逆的,并且只需重新加热到加工温度,树脂就可以根据需要形成另一种形状。热塑性塑料虽然在高温强度和化学稳定性方面通常不如热熔胶,但更耐开裂和冲击损伤。然而,值得注意的是,最近开发的高性能热塑性塑料,如具有半结晶微结构的 PEEK,表现出优异的高温强度和耐溶剂性。
在制造环境中使用复合材料是一种广泛认可的实践。在某些行业(汽车和航空航天)中,复合材料不仅代表了一个既定的过程,而且代表了继续成熟的过程。如果零件包含复杂的几何形状或无法达到高生产率,则制造商通常会选择行使手持上型过程。这是让熟练技术人员手工放置切割干布或预先浸渍材料的过程。使用这种手动方法可以抑制未来的计划生产时间,制造工厂的效率以及最终导致销售损失。手工创建庞大的结构根本无法跟上生产率和自动化的可重复性。因此,许多诸如波音公司(像波音公司)这样的渐进制造商已转向用于大型复合结构(例如翼梁,机翼皮肤和纵梁)的自动制造方法[8]。实施自动复合材料需要大量的资本投资以及陡峭的学习曲线。尽管有明显的优势,但成本和时间的支出都抑制了许多制造商建立自动化。本文将定义重要的术语,为采用自动复合材料提供业务案例,并在决定机器时指出注意事项。通过将灯光放在这些特定的考虑上,可以采取知情和成功的步骤来实施这种不断发展的技术。
玻璃纤维复合材料具有非常高的比抗拉强度和低的比模量,而铍具有出色的比模量但比强度低。图中所示的几种单向先进复合材料表现出高比强度和高比模量的平衡特性。但是,如果在结构应用中需要角铺层结构,则复合材料的强度和模量都会大幅降低,如图中 020 + 450 硼/环氧树脂所示。因此,如果将这些材料用于承受单向力的结构元件,则可以最大限度地发挥先进复合材料的优势。
获得了2024年4月4日的细菌纤维素(BC),由于其独特的结构属性和显着的物理机械特性引起了极大的关注,使其在生物医学应用中非常流行,例如人造皮肤,血管,血管,组织支架和伤口敷料。但是,其在各种领域的广泛应用通常受到机械性能和功能特性差的限制。通过合并合成材料的基于BC的复合材料的发展已广泛研究以解决这些局限性。本评论论文总结了卑诗省合成材料的制造策略,其开发方法和前地图方法,并突出了它们在不同领域的广泛应用。已经设计了各种策略,用于合成BC复合功能化材料,该材料是根据其预期应用的特定性质量身定制的。在BC复合材料的合成中,原位将增强材料添加到合成培养基中,或者主要涉及这些材料中的这些材料中的微丝。各种材料已被用作增强材料,从有机聚合物到无机纳米颗粒。这些复合材料有可能用于组织再生,伤口愈合,固定酶和医疗设备的发展。近年来已经看到了包含导电材料的BC复合材料的发展,这些材料用于生产各种电气产品,例如生物催化剂,酶,电子纸纸,显示器,显示器,电气仪器和光电设备。总而言之,BC复合材料及其应用的合成为生产具有增强性能和不同功能的先进生物材料提供了途径,从而探索了它们作为跨多个部门适用的环保和多功能材料的潜力。关键词:细菌纤维素,可持续性,生物材料,BC-Composites,功能化简介
日本,美国,欧洲和韩国的四个生产地点的一致质量。全球技术支持立即响应客户的要求与客户位置相对应的SCM的进一步增强
本文提出了一种新颖的分析微观力学模型,用于逐步预测连续或不连续取向纤维增强复合材料的力学行为,该模型基于Curtin模型考虑了部件的非线性力学行为和纤维束的统计断裂。选择了PA6基单聚合物复合材料(SPC),并对12种可用的PA6纤维进行了大量的实验测量,并进行了足够的重复次数,以找到可靠的统计威布尔参数。此外,还测试了10种不同的PA6基质样品,这些样品与不同剂量的添加剂和原材料聚合而成。展示了纯PA6基质在提高强度和韧性方面的巨大潜力。结果表明,使用伸长率与PA6纤维数量级相同的坚韧基质可显著提高SPC的强度和韧性。所开发的渐进式微观力学模型为开发新型可回收SPC提供了分析参数框架和设计指南。
出版商:Woodhead Publishing Limited,80 High Street, Sawston, Cambridge CB22 3HJ,英国 www.woodheadpublishing.com Woodhead Publishing,1518 Walnut Street, Suite 1100, Philadelphia, PA 19102-3406,美国 Woodhead Publishing India Private Limited,G-2, Vardaan House, 7/28 Ansari Road, Daryaganj, New Delhi – 110002,印度 www.woodheadpublishingindia.com 出版商:科学出版社有限公司,16 Donghuangchenggen North Street, Beijing 100717,中国 首次出版于 2011 年,Woodhead Publishing Limited 和 Science Press Limited © Woodhead Publishing Limited 和 Science Press Limited ,2011 作者已声明其道德权利 本书包含的信息均来自可靠且备受推崇的来源。转载材料已获得引用许可,并注明出处。已尽合理努力发布可靠的数据和信息,但作者和出版商不能对所有材料的有效性承担责任。作者、出版商或与本出版物相关的任何其他人均不对本书直接或间接造成或声称造成的任何损失、损害或责任负责。未经 Woodhead Publishing Limited 书面许可,不得以任何形式或任何电子或机械手段(包括影印、缩微胶卷和录音)或任何信息存储或检索系统复制或传播本书或其任何部分。Woodhead Publishing Limited 的同意不包括为一般分发、促销、创作新作品或转售而进行的复制。此类复制必须获得 Woodhead Publishing Limited 的书面特定许可。商标声明:产品或公司名称可能是商标或注册商标,仅用于识别和解释,无意侵权。英国图书馆出版数据编目 该书的目录记录可从英国图书馆获取 Woodhead Publishing ISBN 978-0-85709-221-2(印刷版) Woodhead Publishing ISBN 978-0-85709-222-9(在线版) 由英国康沃尔郡帕兹托的 TJI Digital 印刷
过去五年来,爱达荷大学莫斯科分校机械工程系开展了复合材料研究生教育和研究项目。该项目由机械工程副教授 Ronald Gibson 指导。校内开设了复合材料力学高级/研究生课程,并在校外地点(如惠普、博伊西和爱达荷国家工程实验室、爱达荷福尔斯)通过录像带授课。附近的华盛顿州立大学普尔曼分校也通过两所校园之间的新交互式微波链路教授了该课程。R.V.华盛顿州立大学材料科学教授 Subramanian 指导一项聚合物和复合材料研究项目,并从材料科学的角度讲授研究生复合材料课程。两所大学都提供应用力学和材料方面的辅助课程。爱达荷大学的复合材料研究主要针对确定复合材料和结构的动态行为。目前的研究课题包括提高纤维增强聚合物的减振性能、开发用于表征复合材料动态行为的新实验技术以及使用阻尼测量来检测复合层压板中的微观结构损伤。资助机构包括通用汽车技术中心和空军科学研究办公室。私营公司捐赠的大量仪器、计算机和软件也在该研究项目的发展中发挥了重要作用。目前,校内有四名学生,校外有两名学生正在攻读研究生学位,重点是复合材料。