摘要---复合树脂在恢复性牙科中广泛使用。引入了这些材料,以克服汞合金修复材料的固有缺点。牙科汞合金是不可思议的和有毒的。早期的复合材料缺乏应承受咀嚼力的机械性能。已将各种填充颗粒添加到复合树脂中,以改善其物理和机械性能。填充的复合树脂具有较高的抗压强度,耐磨性,易于施用和高透明性。根据填充尺寸和形状,到目前为止已经开发了各种复合材料。本文是对多种类型的复合材料的评论,这些复合材料在技术上是为了修改其属性的技术。关键字---复合材料,可凝结的复合材料,纤维增强复合材料,填充剂,可流动复合材料,纳米复合材料,自粘合物。简介“美,微笑就是它的剑” -Charles Reade。,恢复性牙医一直非常感兴趣,可以通过使用材料来保留牙齿结构并恢复表面缺陷,从而使损失的形式和功能恢复了损失的形式和功能,并且美学也尽可能接近自然。发明
IACMI 扩大研究设施 (SURF) 位于底特律的 Corktown 社区。IACMI 于 2015 年开始对这座建筑进行改造,认识到投资社区和在 Corktown 复兴的前端建立经济影响的重要性。SURF 是与美国制造业研究所、面向未来的轻量化创新 (LIFT) 共享的设施——这是美国唯一一个拥有两个研究所的地点,为多材料合作提供了独特的机会。这两家研究所于 2017 年为该设施举行了剪彩仪式,并自此继续建设技术进步和劳动力发展资源。
美国宇航局已经开发出满足高速率制造严格要求的材料和方法。创新者展示了至少两类满足预期高速率制造需求的新树脂配方。这些新配方经过精心设计,可在相同(即等温)温度下灌注和固化,低于市售材料的温度。然后可以在材料仍处于热状态时将其从模具中取出,而不会扭曲形状,从而通过消除模具中冷却的需要来缩短加工时间。经过后固化过程(耗时 4 小时或更短,可分批进行)后,美国宇航局的下一代复合材料的机械性能将得到改善。
摘要:近年来,牙科材料取得了显著进展,尤其强调了生物活性玻璃和陶瓷复合材料的开发进展。生物活性玻璃促进骨再生和修复的独特能力引起了广泛关注。这导致其在该领域的广泛应用。陶瓷复合材料由于其优异的强度、生物相容性和美观性,作为牙科材料的应用已显示出良好的效果。本综述文章概述了生物活性玻璃和陶瓷复合材料的最新发展,包括它们的特性、制造技术和在牙科领域的应用。本研究将集中于生物活性玻璃在修复牙科、骨增强干预和牙髓治疗领域的应用。将研究陶瓷复合材料在种植牙中的应用,以及它们在其他牙科环境中的预期应用。本综述旨在阐明与使用上述材料相关的困难,包括其易碎性和对精细处理的要求,以及缓解这些困难的合理补救措施。本综述文章说明了生物活性玻璃和陶瓷复合材料的进步能够大大提高各种牙科手术的效果,从而为患者提供更持久、外观更美观、生物相容性的修复体。
摘要:最近,对具有优异磁性能的先进材料的需求不断增加,特别是在执行器领域。高矫顽力(H ci )是一种必不可少的磁性能,它对于磁执行器中可编程的形状变化至关重要,并对其性能产生深远影响。在本研究中,通过引入 Cu 并更精细地控制执行器复合材料中 Sm 2 Fe 17 − x Cu x N 3 磁性成分的结构和形貌,修改了还原 − 扩散过程的温度(将其从 900°C 降低到 700°C),从而获得了具有高 H ci 的新型 Sm 2 Fe 17 − x Cu x N 3 磁体。因此,Sm 2 Fe 17 − x Cu x N 3 磁体显示出显著的 11.5 kOe 的 H ci,超过了非合金 Sm 2 Fe 17 N 3 在较低温度下达到的 6.9 kOe 的值。通过利用 Sm 2 Fe 17 − x Cu x N 3 复合材料的增强磁性并将聚乙二醇加入弹性体基质中,我们成功制造出坚固的执行器。这种创新方法充分利用了硬磁体作为执行器的优势,在高温条件下具有稳定性、精确控制、长寿命、无线功能和能源效率,凸显了硬磁体在一系列应用中的巨大潜力。关键词:硬磁软执行器、Sm 2 Fe 17 − x Cu x N 3 、还原扩散温度、矫顽力、软机器人、软磁复合材料、Sm − Fe − N
由于金属合金重量轻、机械性能高,复合材料正在航空航天、汽车、船舶和建筑部件等多种先进应用中取代金属合金。因此,开发抗损伤和耐用的复合材料是必要的。当然,纤维基体脱粘、基体微裂纹和冲击损伤是复合材料应用中经常遇到的主要失效模式。此外,复合材料的部署和维护对机翼和尾翼等关键结构部件构成了挑战。因此,先进的材料和方法对于解决这些问题至关重要。使用复合材料的自修复技术似乎很有前景,因为它旨在修复或修复结构中的断裂和损伤起始和/或扩展。自修复复合材料可防止失效并延长关键结构的使用寿命。由于这些材料可以触发几乎自动修复,因此结构的维护可以大大简化,其中一些不需要任何外部干预即可启动修复过程。自修复复合材料能够在损坏开始时自动修复。早期的修复能力发展概念依赖于模仿树木和动物等生物体,这激发了开发自修复材料的研究。过去几十年来,人们一直在研究自修复材料和复合材料,特别是由自修复环氧树脂的发展推动(White 等人,2002 年)。自修复机制可分为两种类型,外在修复和内在修复。外在愈合基于使用愈合剂作为附加添加剂,而内在愈合涉及材料结构中的可逆分子键(超分子化学)。此外,还可以根据愈合方法进行分类,无论是自主愈合还是非自主愈合(即有或没有外部刺激)。开发自修复复合材料的一些众所周知的方法是包含微胶囊、中空纤维或含有愈合剂的血管网络(Blaiszik 等人,2008 年)。自修复也可以通过热激活,使用可逆相互作用或溶解的热塑性聚合物。形状记忆效应也已用于展示自修复特性。
在这项研究中,通过高能机械铣削随后进行了热处理,合成了一种新型的SIO 2 /NBO X复合材料,旨在探索其作为环境修复的吸附剂的有效性。使用X射线衍射(XRD),X射线荧光(XRF),氮吸附 - 吸附等温线,热力计分析(TGA),傅立叶型红外光谱(FTIR)和扫描电子显微镜(SEM)(SEM)进行彻底表征。XRD分析证实了SIO 2 /Nbox复合材料的无定形性质,与SI相比,NB的显着存在(81.1%)(15.8%),如XRF分析所示。在水溶液中使用亚甲基蓝(MB)染料进行了吸附研究,评估受控条件下的吸附能力和动力学。该复合材料表现出快速吸附能力,遵循伪一阶动力学模型,在短时间内达到39.32 mg g -1。Langmuir等温模型拟合了吸附数据,表明最大容量为16.7 mg g -1。这些发现突出了SIO 2 /NBO X作为去除染料的有效吸附剂的潜力,这有助于环境友好的废水处理解决方案。
FRPC的回收利用是由于废物(材料混合)的复杂性,消费后产品中的杂质以及用于收集废物收集的非开发基础设施而变得复杂。此外,材料特性通常由于恶劣的回收条件而恶化,并且矩阵或纤维被检索,但很少两者。[7]因此,现有技术的成本很高,回收材料的市场有限。neverther,必须增加FRPC的回收利用,以弥补FRPC市场的可持续性和循环性。,例如,Windeurope是一家500多家公司的财团,出版了一份职位文件,该论文承诺到2025年,以重复使用,回收或恢复100%的退役刀片,叶片废物预先设置为每年约25 000吨,到2025年。[8]
抽象的磁反应性软材料是软复合材料,将磁性填充剂嵌入软聚合物矩阵中。这些活性材料由于能够在磁场的应用下通过远程和不受束缚的控制实现快速,可编程的形状变化,因此吸引了广泛的研究和工业兴趣。他们将在软机器人/设备,超材料和生物医学设备中具有许多高影响力的潜在应用。具有广泛的功能磁性填充剂,聚合物矩阵和先进的制造技术,可以对材料特性进行编程,以用于集成功能,包括可编程形状变形,基于动态形状变形的机能,对象操纵和组装,远程热量,远程热量产生以及可重新配置电子设备。在这篇评论中,提出了多功能磁性响应式软材料中最先进的发展和未来观点的概述。
钦奈,印度在Booma Devi博士的指导下摘要: - 综合是材料科学工业的新增长,主要是飞机工业,低成本所需的材料,重量较小,但应具有高强度以提高飞机的效率,甚至在汽车工业中。上述内容的解决方案仅是复合材料。该项目提供了用碳纤维和切碎的玻璃纤维用环氧树脂加固的碳纤维机械性能的制造和研究。在此过程中,制造是通过手工层次的方法进行的,碳,切碎的玻璃和电子玻璃纤维的随机取向。此外,在样品上进行了机械测试,例如拉伸试验,弯曲试验和腐蚀测试,以研究复合材料的机械性能。从研究中可以看出,碳纤维三明治复合材料被证明是一种有效的复合材料,具有更具耐腐蚀性和环境友好的耐受性,可用于更大的海水暴露区域。关键字: - 碳纤维复合材料;弯曲测试;拉伸测试;腐蚀;