木制作物,以其营养和药用价值而闻名,包括各种种类和品种,其中许多物种富含花青素。这些氟中的色素不仅有助于甘蓝植物的鲜艳颜色,而且还具有明显的抗氧化剂,抗炎性和神经保护特性。本综述对花青素在甘蓝蛋白作物中的分布,成分和健康益处提供了深入的分析,强调了它们在食品工业和医学中的潜在应用。我们讨论了多种甘蓝组织中花青素的积累模式,遗传和环境因素对浓度的影响以及酰化对其稳定性和生物活性的影响。本次审查还探讨了胸腺花青素的抗氧化能力和心脏保护作用,以及它们在防止肝和肾脏损伤和促进神经保护作用方面的作用。此外,我们研究了花青素作为天然食品着色剂的使用,并将其整合到智能包装中,以实时监测食物新鲜度。我们的发现强调了胸腺花青素的多方面收益,将它们定位为功能性食品和可持续食品系统开发的关键组成部分。
量子误差缓解技术可以降低当前量子硬件上的噪声,而无需容错量子误差校正。例如,准概率方法使用有噪声的量子计算机模拟无噪声量子计算机,但前提是仅产生可观测量的正确预期值。这种误差缓解技术的成本表现为采样开销,其随着校正门的数量呈指数增长。在这项工作中,我们提出了一种基于数学优化的算法,旨在以噪声感知的方式选择准概率分解。与现有方法相比,这直接导致采样开销的基础显著降低。新算法的一个关键要素是一种稳健的准概率方法,它允许通过半有限规划在近似误差和采样开销之间进行权衡。
摘要 我们介绍了一种用于量子电路强经典模拟的增强技术,该技术将“稳定器求和”方法与基于 ZX 演算的自动简化策略相结合。最近有研究表明,通过将电路中的非稳定器门表示为魔法状态注入,并将它们一次分解为 2-6 个状态的块,可以对量子电路进行经典模拟,从而获得(可有效模拟的)稳定器状态的总和,并且比简单方法的项少得多。我们将这些技术从具有魔法状态注入的 Clifford 电路的原始设置改编为通用 ZX 图,并表明通过将这种“分块”分解与基于 ZX 演算的简化策略交错,我们可以获得比现有方法小几个数量级的稳定器分解。我们说明了这种技术如何对具有多达 70 个 T 门的随机 50 和 100 量子比特 Clifford + T 电路的输出以及 Bravyi 和 Gosset 先前考虑过的具有超过 1000 个 T 门的隐藏移位电路系列执行精确范数计算(从而进行强模拟)。
人工智能 (AI) 在音乐领域能做什么和不能做什么是音乐研究人员和人工智能专家都感兴趣的重要话题之一。本研究在人工智能技术在音乐创作中日益重要的作用及其对创作过程的影响的背景下提供了重要的分析。它通过将人工智能定位为作曲家创造力的补充工具并增强对文化适应过程的理解,为文献做出了贡献。该研究旨在确定人工智能和作曲家作品之间的感知差异,研究这些差异的音乐和文化基础,并揭示影响听众体验的因素。在研究设计中,采用了混合方法,结合了定性和定量研究方法。在定量阶段,采用双盲实验设计,以确保参与者公正地评价作曲家和人工智能作品。在定性阶段,收集参与者的意见。参与者是 10 名年龄在 19 至 25 岁之间的人,具有不同的文化和教育背景;6 人接受过正规音乐教育,4 人是普通听众。数据收集工具包括结构化访谈表和音乐作品感知因素评估量表。在研究过程中,每位参与者在 20 分钟的标准化聆听环节中评估了两部人工智能和两部作曲家作品。所有聆听环节均使用专业音频设备进行。分析显示,作曲家作品在所有类别中的得分明显高于人工智能作品(p <.05)。观察到了显著的差异,特别是在情感深度(X 作曲家 = 4.6,X AI = 3.1)和记忆性(X 作曲家 = 4.4,X AI = 3.2)类别中。研究得出结论,作曲家作品在情感深度、结构连贯性和文化共鸣方面比人工智能作品更有效。此外,文化背景和音乐教育成为影响感知差异的重要因素。未来的研究应扩大参与者范围并结合神经认知数据,以促进对感知机制的更深入了解。此外,音乐人工智能系统的发展应包括融合基于Transformer和RNN的高级学习模型、实现传统音乐理论原理、增强情感表达能力、提高文化适应能力、完善实时交互机制等。
石油和天然气复合物的开发与提取的碳氢化合物的运输方法的改善密不可分。使用内部光滑涂料是提高运输天然气系统效率的方法之一。这些涂层允许降低气体运输成本,并在附加的内部管道腔免受腐蚀损伤中保护。由于将天然气产量转移到远北的趋势,其负温度非常低,并且在运输的天然气中将较重的碳氢化合物组件的比例增加,因此有必要提出新的技术解决方案,以确保在新条件下主要的天然气管道的有效运行。作者建议研究使用以前尚未用于气管道的荧光塑料涂层的可能性,并被认为是有希望的。本文介绍了对使用的环氧涂层和施加在钢板表面上的有希望的荧光塑料涂层的比较分析。将环氧涂层应用于板的表面,该表面通过沙蓝色清洁,在使用低粘合性能的荧光塑料涂层之前,准备板表面以确保通过初步激光处理和随后的冷磷脂确保牢固的粘合键。在工作过程中,进行了对涂料的物理和机械特征的研究,包括确定正常和负温度下涂层的影响强度,以及通过Erickson方法确定弹性,以及确定弯曲强度,弯曲强度和等效粗糙度的确定。根据研究的结果,与环氧涂层相比,在低温下,荧光塑料涂层具有更大的弹性,弯曲强度和冲击强度。此外,还发现,荧光塑料涂层在等效粗糙度方面不如环氧涂层,这会影响液压抗性的量。因此,这项工作给出了将荧光塑料涂层作为内部光滑涂层的相关性,以确保在负温度的条件下,气管道的效率更高,同时增加了运输气体中较重的碳氢化合物组件的比例。关键词:气管管道,荧光塑料涂层,环氧涂层,平滑涂层,冲击强度,涂层弹性,等效的粗糙度系数。doi:10.17580/cisisr.2024.02.16
1。引言在植物培养中获得高质量和高收率是由许多因素决定的,其中最重要的是肥料(Azadi等,2022; Lavic等,2023)。使用矿物质肥料会导致高收益的增加,但它会不利地影响土壤的物理,化学和生物学特性,并导致土壤污染和效率低下(Uyanöz等,2004; Jia等,2022)。由于全世界人口的迅速增长和Türkiye,化学肥料被广泛而无意间用于从单位区域获得额外的收益率。结果,人类健康恶化,环境污染发生。考虑到这些缺点,有机起源的肥料用于可持续农业(Altindag等,2006; Channabasana等,2008; Erturk等,2012; Naghman等,2023)。
我们引入结构化分解。这些是类别理论数据结构,它们同样从图理论中概括了概念(包括树宽度,分层树宽度,共树宽度和图形分解宽度),地理群体理论(特定的低音低音理论)和动态系统(例如,混合动力学系统)。此外,结构化的分解使我们能够将这些上述组合不变性概括为新的环境中的结构和算法组成的研究,它们在结构和算法的组成性研究中起着Central的作用。例如,在任何类别中,它们都描述了算法上有用的结构组成:作为我们理论的应用,我们证明了用于组成问题的算法元理论。从具体的术语中,当在图表的猫效中实例化时,该元理论会产生NP- hard问题的组成算法,例如:m aximim b ibartite s ubgraph,m aximim p lanar s ub -
近期量子计算机的计算能力受到门操作的噪声执行和有限数量的物理量子比特的限制。混合变分算法非常适合近期量子设备,因为它们允许在用于解决问题的量子资源和经典资源数量之间进行广泛的权衡。本文通过研究一个具体案例——将量子近似优化算法 (QAOA) 应用于最大独立集 (MIS) 问题的实例——研究了算法和硬件层面的权衡。我们考虑了 QAOA 的三种变体,它们在算法层面根据所需的经典参数数量、量子门和所需的经典优化迭代次数提供不同的权衡。由于 MIS 是一个受约束的组合优化问题,因此 QAOA 必须尊重问题约束。这可以通过使用许多多控制门操作来实现,这些操作必须分解为目标硬件可执行的门。我们研究了该硬件级别可用的权衡,将不同本机门集的门保真度和分解效率组合成一个称为门分解成本的单一指标。
俄罗斯将于2021年5月20日接任北极理事会轮值主席国,任期两年,旨在将北极理事会打造成为俄罗斯“战略和外交影响力的展示平台”1。 2022 年 2 月 24 日入侵乌克兰危及了本届主席国初期项目的实施,并引发了极地地区的动荡,从区域机构的瘫痪到芬兰和瑞典加入北约的进程。三十年区域合作,特别是在科学和经济领域的合作日益富有成果,这一时期即将结束。自20世纪90年代初以来,北极国家开始对北极进行治理,这使得美国和俄罗斯能够在保护生物多样性、北冰洋海上交通安全、应对气候变化等共同问题上进行对话与合作。北极“例外论”——使极地地区免受地缘政治紧张局势影响的独特特征——自 2014 年以来有所减弱,但似乎已超过 2%。
水果形状是西瓜的重要特征。以及具有不同果实形状的西瓜的根际和内生微生物的组成也不清楚。分析了为了阐明西瓜水果形成的生物学机制,分析了椭圆形(OW)和西部西瓜(CW)之间的根际和内生微生物群落组成。结果表明,除根际细菌丰富度(p <0.05)外,根际和内生微生物(细菌和乐趣)多样性在OW和CW之间具有统计学意义(p> 0.05)。然而,内生微生物(细菌和真菌)组成显着差异。首先,芽孢杆菌,杜鹃花,cupriamonas和devosia是圆形西瓜(CW)的橄榄球中独特的土壤多元型细菌属。相比之下,Nocardioides,ensifer和saccharomonospora是椭圆形西瓜根际(OW)的根际的特殊土壤主要细菌属。同时,头孢菌,新杂质孢子虫,菲拉斯尼普尔和丘疹是圆形西瓜(CW)的根茎中独特的土壤主要真菌属;相比之下,Acronium,cladosporium,Cryptocococococococococococococuseae,Sodiomyces,Microascus,Conocybe,Sporidiobolus和Acromonium是卵形水甲基(OW)的根茎中独特的土壤主导的真菌属。所有上述结果表明,具有不同果皮形状的西瓜精确地募集了根茎和茎中的各种微生物。Additionally, Lechevalieria , Pseudorhodoferax , Pseudomonas , Massili a, Flavo- bacterium , Aeromicrobium , Stenotrophomonas , Pseudonocardia , Novosphingobium , Melittangium , and Herpetosiphon were the unique dominant endophytic bacterial genera in stems of CW;相比之下,falsirhodobacter,kocuria和kineosporia是OW茎中的特殊内向属属。此外,lectera和fusarium是CW茎中独特的主导性内生真菌属。相比之下,仅尾孢子是OW茎中的特殊主导性内生真菌属。同时,可以推测不同根磷和内生微生物的富集与西瓜水果形状有关。