抽象制作音乐作品提出了一系列独特的挑战,与视觉艺术形式遇到的挑战不同。音乐的时间性质需要熟练处理时间动态的模型。此外,组成通常包含多个曲目,每个曲目以其自己的时间复杂性为特征,要求对其相互依存的进化进行复杂的方法。与静态视觉图像不同,音符是测序的,通常组织成和弦或旋律,对专业时间顺序结构施加了要求。本文广泛地研究了Genai在连续生成对抗网络(GAN)领域的进化旅程,专门针对音乐构图量身定制。我们介绍了一套新颖的模型,精心制作,以解决音乐一代的细微差别,探索它们在生产复杂的多轨构图方面的功效。我们的调查集中在对这些模型的进化轨迹的全面分析中,审查了它们自主在各种轨道上产生凝聚力序列的能力。通过严格的经验评估,我们证实了模型产生令人信服的音乐节目的能力,而不是人类干预。此外,我们深入研究了复杂的技术讨论,阐明了推动发电过程的潜在机制,包括神经体系结构和训练方法的复杂相互作用。除了经验验证外,我们还进行了详细的用户研究,从而获得了对生成组成的主观感知的见解。此外,我们深入研究了音乐发电中人类合作的领域,通过无缝提供和谐的伴奏来揭示Genai对人类作品的补充潜力,从而弥合了艺术创造力和计算进步之间的差距。关键字:生成人工智能,音乐构图,进化,神经网络体系结构,长期依赖建模,跨学科协作,道德考虑,模型评估,音乐连贯性,表现力,表现力,创造性景观,文化丰富,技术丰富,技术进步,技术进步,轨道之间的互动,未来> 1。引言近年来,人工智能领域(AI)在产生各种形式的内容,利用技术(例如生成对抗性网络(GAN))方面取得了重大进步。尽管这些进步是值得注意的,但音乐作品带来了必要专业方法的独特挑战。与静态视觉艺术形式不同,音乐随着时间的流逝而展开,需要模型
2 佛罗里达国际大学,10555 W Flagler St,EC3442 佛罗里达州迈阿密 33174 jones@fiu.edu 摘要 玻璃料是用于生产混合电路的厚膜电阻器 (TFR) 的主要成分。已经评估了 30 多种具有不同成分的商用无铅玻璃料,以开发一种无铅厚膜电阻器,该电阻器与典型的工业厚膜加工兼容,并且具有与含铅电阻器相当的电气性能。从 33 种候选玻璃组合物中选出了两种用于制备基于 RuO 2 的 TFR 油墨,将其丝网印刷在氧化铝基板上并在 850°C 下烧制。这些电阻器的初步结果表明,当 RuO 2 为 5-15% 时,薄层电阻范围从 400 欧姆每平方 ( Ω / □ ) 到 0.4 兆欧姆每平方 ( M Ω / □ ),热温度系数 (HTCR) 在 ±350ppm/°C 范围内。关键词:无铅,玻璃料,厚膜电阻器,薄层电阻,TCR 1 引言 厚膜电阻器 (TFR) 是一种复合材料,其中导电相嵌入连续玻璃基质中 [1]。它已广泛应用于混合微电子电路 [2-5]。通常,将导电粉末(氧化钌、氧化铱、钌酸铅)与玻璃料混合,与有机载体混合以获得可印刷油墨,将该油墨丝网印刷在氧化铝基板上然后烧成。玻璃料是厚膜电阻器的主要成分之一,大多数市售的 TFR 产品都含有铅硼硅酸盐玻璃,其中氧化铅含量相当甚至占主导地位 [6]。为了减少因电子产品消费和处置增加而对环境造成的负面影响,无铅加工的需求一直很高。开发新型无铅厚膜材料是最受认可的解决方案之一。因此,有各种无铅焊料、导电产品和其他封装产品可供选择,它们具有与含铅产品相当的性能;然而,对于无铅 TFR,仅报告了部分令人满意的成分。M. Prudenziati 等人 [1] 使用七种无铅玻璃制备了基于 RuO 2 的 TFR。结果尚无定论,证明了无数复杂现象,包括脱玻化、氧化铝基板上玻璃的相关渗漏、玻璃基质中导电晶粒的异常分布和相分离。MG Busana 等人 [7] 使用铋酸盐玻璃,声称
发现具有新技术特性的新化合物对于化学的所有领域都很重要。在半导体纳米晶体领域,许多地球上储量丰富且无毒的成分具有理论上预测的现有特性,但仍有待合成。NANOABZ 旨在通过自下而上的胶体合成方法加速发现新型 ABZ 纳米晶体(A-碱金属,B-过渡金属/氮族元素,Z 为硫族元素)。通过使用实验和计算方法研究反应动力学、表面化学和结构-性能关系的多方面方法,NANOABZ 将成为系统发现迄今为止缺失的可实现功能材料的途径。
摘要 RELCoBatt 项目的目的是开发一种低成本的可溶铅电池,该电池使用回收的铅酸电池中的电解质。该项目开发的电池与其他液流电池不同,因为它在两个电极反应中使用相同的溶剂化 Pb 2+ 离子,这意味着它不需要膜,并且使用单一电解质,在运行过程中通过电池组泵送电解质(图 1)。在这项工作中,通过使用 3 种不同的电解质成分进行实验来研究充电状态的影响,模拟不同的充电状态:
全球最大的重型建筑设备制造商之一与 OSG 接洽,希望他们开发一种新型玻璃解决方案,以保护操作员免受落石和碎片的伤害,同时使他们能够以最高效率完成工作。该客户希望更换其设备上由各种材料制成的零件,包括金属棒、塑料材料和非常厚的玻璃成分。该解决方案还需要满足两个特定的冲击标准和正常的汽车标准。为此,OSG 开发了以下成分:
摘要:采用放电等离子烧结技术制备了不同成分的AlN-MgO复合材料,系统研究了成分对其微观结构、热性能和力学性能的影响。AlN-MgO复合材料中MgO的成分控制在20~80wt%。结果表明,烧结过程中未发生相变,MgO和AlN晶格内形成了不同的固溶体。AlN-MgO复合材料的晶粒结构比烧结的纯AlN和MgO样品更细。透射电子显微镜分析表明,复合材料中既存在富氧、低密度的晶界,也存在含有尖晶石相的干净边界。 100 o C时烧结的纯AlN样品表现出最高的热导率(53.2 W/mK)和最低的热膨胀系数(4.47×10 -6 /K);而烧结的纯MgO样品表现出中等的热导率(39.7 W/mK)和较高的热膨胀系数(13.05×10 -6 /K)。但随着AlN-MgO复合材料中MgO含量的增加,AlN-MgO复合材料的热导率从33.3降低到14.9 W/mK,而热膨胀系数普遍增加,随着MgO含量的增加从6.49×10 -6增加到10.73×10 -6 /K。MgO含量为60 wt%的复合材料整体表现出最好的力学性能。因此,AlN-MgO复合材料的成分和微观结构对其热性能和力学性能具有决定性的影响。
成功地解码了控制多组分功能玻璃中结晶的结构描述符,可以为从试用方法和玻璃/玻璃陶瓷组成设计的过渡和经验建模铺平道路,从而朝着更合理和科学严格的定量结构 - 结构 - 实用关系(QSPR)模型。然而,由于多组分玻璃的组成和结构复杂性以及与成核相关的时间和长度尺度的较长,QSPR模型的发展和验证仍在其婴儿期。本文中提出的工作是通过结合实验和计算材料科学的优势来解码化学结构驱动因素,以促进或抑制碱/碱性 - 碱性 - 钙化型Alu Minoborosilicate在基于QSPR模型的开发中,促进或抑制成核和晶体的增长的化学结构驱动因素,从而促进或抑制核的成核和晶体生长,从而使基于基于QSPR模型的开发(PAWER M.DAWAID)促进成核和晶体生长。结果揭示了以下两个描述符,这些描述符在功能玻璃中特定的铝硅酸盐相位的成核和结晶:(1)SIO 4和ALO 4单元之间的混合程度,即Si - O - a-o - al链接,以及(2)(2)在玻璃结构中的镜头阶段之间的差异(2)差异。基于已建立的组成 - 结构 - 结晶行为关系,基于聚类分析的QSPR模型已经开发(并进行了测试),以预测所研究玻璃中尼索线(和氧化足)结晶的倾向。该模型已经在目前和以前的研究中对几个组成进行了测试,并成功预测了所有玻璃成分的结晶倾向,即使在先前的经验和半经验模型失败的情况下,即使是在此情况下。
飞行员(翼地面测量包括VPM,LAQ建模)ECLIF3(地面和飞行测量的排放/关节尾尾:100%SAF,混合物)Corac Volcan(100%SAF兼容性,地面和飞行测量值。对于各种燃料组成和燃烧模式),ECOD(SAF排放测试)Corac Cirrus H2(H 2 C围栏建模,H 2 C候选者评估,实验室expe。+与DGAC/CLIMAVIATION),蓝色秃鹰(H2C围栏实验)Ca hydea(H 2 C Demo Prepa。,梳子。开发,低NOX技术,概要建模)
本文介绍了对自动零件的多酰胺6(PA6GF30)和聚碳酸酯(PC)多酰胺6(PA6GF30)多酰胺6(PA6GF30)多组分废物聚合物组成的混合物的研究研究。根据其成分的含量进行了对所获得的混合物的熔体流速进行比较分析。研究了混合物中成分的兼容性及其在获得的聚合物组成中的分布。证明了次级多组分混合物对物理和机械性能的组成的影响。显示了注射成型技术过程的预测主要参数的多组分聚合物废物的可能性。关键字:多组分聚合物废物,聚酰胺6,聚碳酸酯,注塑成型,次要加工。1。简介∗