疫苗接种被视为最伟大的公共卫生成功案例之一。事实证明,疫苗接种是一种有效的医疗对策,可以减轻大流行可能造成的破坏性影响,2014 年的埃博拉疫情和 2020-21 年的 COVID-19 疫情就是明证。这些经验表明,可以将疫苗研发时间从十年或更长时间压缩到不到一年。然而,这需要在紧急情况发生之前和期间采取积极主动、协调一致和加快步伐的努力。虽然世界卫生组织 (WHO) 将继续在未来的卫生紧急情况应对工作中发挥核心作用,但二十国集团 (G20) 成员国在动员各国政府、学术和研究组织、多边和双边机构、国际组织、制药和生物技术公司以及其他利益相关方(如疫苗开发伙伴)方面也发挥着关键作用。二十国集团占世界GDP的80%以上、全球贸易的75%、全球人口的60%,因此,它具有独特的优势,可以作为通过快速研发和部署疫苗来加强流行病防范和应对的平台。
世界正在经历一场重大的能源转型,电网中风能和太阳能等间歇性能源的份额不断增加。这些可变的可再生能源需要一种能源存储解决方案,以便顺利整合这些能源。电池可以提供短期存储解决方案。然而,仍然需要能够在没有抽水蓄能潜力的地方提供每周能源存储的技术。本文介绍了基于深海“浮力储能”的创新能源存储解决方案。海洋深度很大,潜在的能量可以储存在基于重力的储能系统中。系统越深,储存的能量就越多。浮力储能技术 (BEST) 的成本估计为 50 至 100 美元/千瓦时(储存电能)和 4,000 至 8,000 美元/千瓦(安装容量)。BES 可以作为电池的可行补充,提供每周的存储周期。除了储存能量外,该系统还可用于有效压缩氢气。
世界正在经历一场重大的能源转型,电网中风能和太阳能等间歇性能源的份额不断增加。这些可变的可再生能源需要一种能源存储解决方案,以便顺利整合这些能源。电池可以提供短期存储解决方案。然而,仍然需要能够在没有抽水蓄能潜力的地方提供每周能源存储的技术。本文介绍了基于深海“浮力储能”的创新能源存储解决方案。海洋深度很大,潜在的能量可以储存在基于重力的储能系统中。系统越深,储存的能量就越多。浮力储能技术 (BEST) 的成本估计为 50 至 100 美元/千瓦时(储存电能)和 4,000 至 8,000 美元/千瓦(安装容量)。BES 可以作为电池的可行补充,提供每周的存储周期。除了储存能量外,该系统还可用于有效压缩氢气。
摘要 — 领域自适应是一种在深度学习 (DL) 时代减轻昂贵的数据标记过程负担的有效方法。一种实际情况是部分域自适应 (PDA),其中目标域的标记空间是源域标记空间的子集。尽管现有方法在 PDA 任务中取得了不错的效果,但由于目标只是原始问题的一个子任务,因此深度 PDA 模型中存在计算开销的可能性很高。在这项工作中,PDA 和模型压缩无缝集成到统一的训练过程中。通过最小化软加权最大均值差异 (SWMMD) 来减少跨域分布差异,SWMMD 是可微的并在网络训练期间起到正则化的作用。我们使用梯度统计来压缩过度参数化的模型,以根据批量归一化 (BN) 层中的相应缩放因子来识别和修剪冗余通道。实验结果表明,我们的方法可以在各种 PDA 任务上实现与最先进方法相当的分类性能,同时显著减少模型大小和计算开销。
摘要(150个单词)现代镜头设计能够解决> 10吉像素,而相机框架速率和高光谱成像的进步使Terapixel/S数据获取成为了真正的可能性。阻止这种高数据率系统的主要瓶颈是功耗和数据存储。在这项工作中,我们表明模拟光子编码器可以应对这一挑战,从而可以使用比数字电子设备低的功率来实现高速图像压缩。我们的方法依赖于硅 - 光子学前端来压缩原始图像数据,预言了能量密集型图像调理并减少数据存储要求。压缩方案使用被动无序的光子结构来对原始图像数据进行内核型随机投影,其功耗最少和低潜伏期。后端神经网络可以以超过90%的结构相似性重建原始图像。此方案有可能使用小于100 FJ/Pixel处理Terapixel/S数据流,从而为超高分辨率数据和图像采集系统提供了途径。
简介:低强度激光(LLLT)治疗已用于减轻正畸治疗期间施加的力量所引起的不适和疼痛。目的:评估LBI应用对正畸牙移动过程中牙周膜受压初期痛觉的影响;并比较该疗法在两性之间的效果。材料和方法:样本包括 30 名志愿者,他们需要对第一下磨牙进行绑带处理。安装分离橡皮圈后,在照射侧的近远中根尖区(波长 808nm、能量 2J、时间 20s、能量密度 8.32J/cm2)及根区三处点位(波长 808nm、能量 1J、时间 10s、能量密度 4.16J/cm2)进行红外线 LLLT 照射,并与未照射的对侧第一磨牙(对照侧)进行比较,照射时间 3 个时间点为:0hs、24hs 和 48hs。通过在安装后 0 小时、24 小时和 48 小时解释视觉模拟量表 (VAS) 来评估疼痛感知,显著性水平为 5%。结果:观察发现,无论性别和时间如何,接受照射的一侧的疼痛程度明显较低(p<0.05)。无论时间和部位,女性的疼痛程度都明显高于男性(p<0.05)。时间之间没有显著差异(p>0.05)。结论:LBI 降低了通过弹性分离促进牙周膜压缩的患者的初始疼痛感知,并且在观察时间内女性表现出更高的疼痛敏感性感知。
提出了一种评估飞机发动机监测数据的新方法。通常,预测和健康管理系统使用某些发动机部件的退化过程知识以及专业专家意见来预测剩余使用寿命 (RUL)。出现了新的数据驱动方法,可以在不依赖这种昂贵的过程的情况下提供准确的诊断。然而,它们中的大多数都缺乏解释组件来理解模型学习和/或数据的性质。为了克服这一差距,我们提出了一种基于变分编码的新方法。该模型由一个循环编码器和一个回归模型组成:编码器学习将输入数据压缩到潜在空间,以此为基础构建一个自解释的地图,可以直观地评估飞机发动机的劣化率。获得这样一个潜在空间是通过一个由变分推理指导的新成本函数和一个惩罚预测误差的项来规范化的。因此,不仅可以实现可解释的评估,而且还可以实现显著的预测准确性,优于 NASA 流行的模拟数据集 C-MAPSS 上的大多数最先进的方法。此外,我们利用实际涡扇发动机的数据演示了我们的方法在真实场景中的应用。
插入中央血管的导管,其尖端位于上腔静脉、下腔静脉或右心房的下三分之一处。CVAD 可用于输送静脉 (IV) 药物、IV 液体、肠外营养液、血液和血液制品。细胞毒性 1 一种治疗剂,旨在(但不限于)治疗癌症。细胞毒性药物是危险药物,在人类或动物中表现出以下一种或多种特性:致癌性、致突变性(遗传毒性)、致畸性、生殖或发育毒性、低剂量时的器官毒性。分散和稀释一种处理特定药物外渗的策略,包括在患处应用热敷。这会导致血管舒张,从而增加药物分布并有助于药物从损伤部位扩散。可根据当地政策使用增加吸收的药物,例如透明质酸酶。红斑 毛细血管扩张和充血导致皮肤发红,通常是炎症或感染的征兆。 渗出 静脉注射过程中液体从血管中逸出/意外泄漏到周围组织或皮下空间 在癌症治疗中,这是指注射过程中 SACT 的泄漏。渗出可能会引起疼痛或无痛。
我们考虑深度神经网络 (DNN) 在具有挑战性的一次性/后训练环境中的模型压缩问题,在该环境中,我们获得了一个经过精确训练的模型,并且必须仅基于少量校准输入数据对其进行压缩,而无需进行任何重新训练。鉴于新兴的软件和硬件支持通过加速剪枝和/或量化来执行压缩模型,这个问题变得很普遍,并且已经针对这两种压缩方法分别提出了性能良好的解决方案。在本文中,我们介绍了一种新的压缩框架,该框架在统一的环境中涵盖权重剪枝和量化,具有时间和空间效率,并且大大提高了现有后训练方法的实际性能。在技术层面,我们的方法基于 [LeCun、Denker 和 Solla,1990] 的经典最佳脑外科医生 (OBS) 框架的精确和高效实现,该框架扩展到还涵盖现代 DNN 规模的权重量化。从实际角度来看,我们的实验结果表明,它可以显著改善现有后训练方法的压缩-准确度权衡,并且可以在后训练环境中实现修剪和量化的准确复合应用。
如今,氢气已在美国工业环境中使用,因此运输和储存氢气所需的技术和知识已经存在。为了有效地运输或储存氢气,必须对气体进行大幅压缩以增加其能量密度,将其冷却成低温液体,或将其与另一种化学载体(例如吸附材料、液态烃、化学氢化物或金属氢化物)结合。压缩氢气通过卡车在管道拖车中或通过管道运输,类似于天然气的运输。液态氢通过超绝缘液体油罐车运输。当管道不可用时,油罐车通常用于将液态氢运输更长的距离,因为它们可以比气体管道拖车承载更大的容量。管道本身充当某种储存容器。与氢气的运输一样,其储存设施必须能够将低温或压缩氢气储存在绝缘液体罐(杜瓦瓶)或气体储存罐等容器中。对于长期储存,需要类似于天然气储存的地质散装地下储存洞穴。