1 Oxford Immune Algorithmics, Oxford University Innovation, Oxford, United Kingdom, 2 Center for Logic, Epistemology and the History of Science, University of Campinas (UNICAMP), Brazil, 3 DEXL, National Laboratory for Scientific Computing (LNCC), Brazil, 4 Department of Oncology-Pathology, Center for Molecular Medicine, Karolinska Institutet, Sweden, 5算法动力学实验室,分子医学中心,Karolinska Institutet,瑞典,6个生活系统实验室,阿卜杜拉国王科学技术大学,托瓦尔,沙特阿拉伯王国,艾伦·图灵研究所,英国图书馆,伦敦,英国,英国,国王,国王,国王国王,国王,国王,国王,英国国王,英国图书馆,英国国王8号。伦敦大学,英国
如[5]中,LET(γ,ϕ)表示一个组装空间(AS)或组件子空间。为了简化符号的利益,可以将(γ,ϕ)称为γ,而ϕ给出的边缘标记不相关。来自[5],我们可以说Cγ(x)表示组装空间γ中对象X的组装索引。令S =(γ,φ,f)是一个无限的组装空间,其中每个组装空间γ∈γ是有限的,φ是每个γ的相应边缘标签ϕγ的集合,f =(f 1,。。。,f n,。。。 )是嵌入的无限序列(每个嵌入也是[5]中所示的装配图),最终会生成s。也就是说,每个f i:{γi}⊆γ→{γi +1}⊆γ是一种特定类型的组装图,将单个组装子空间嵌入较大的组件子空间中,从而使所得的嵌套组装子空间的序列定义了一个总阶,其中 s
心理能力压缩是由幸福激素减少和应激激素(肾上腺素和皮质醇)的增加驱动的,可以将其视为树的根部,代表了问题的基本原因。这种压缩产生的症状由树的分支代表,包括五种关键的心理困扰类型:抑郁症,各种形式的焦虑,包括强迫症,恐惧症,恐慌发作和普遍焦虑。这些症状在个体之间可能存在很大差异,有些症状只有一个或两个分支,而另一些分支可能会遇到多个分支。
摘要 - BioInformatics应用程序通常需要根据其与特定序列目标的相似性过滤FastQ测序读取,例如消除与特定病毒相关的污染或隔离读取。尽管基于对齐的方法对这些任务有效,但它们表现出降低的灵敏度并可能引入高估,尤其是在面对较低的相似性搜索时。在本文中,我们使用一种新颖的无对齐方法来过滤FASTQ根据定义的相似性阈值读取。与基于对齐方式的方法不同,即使在相似性较低的方案中,例如在古代DNA中,我们的方法也保持较高的灵敏度。此外,我们的方法是基于压缩的,可以减轻其他方法固有的高估风险。我们在各种应用程序中演示了我们方法的多功能性,并提供了一种称为磁铁的公共开源物。磁铁提供了用于加速处理的多线程功能,并且可以在https://github.com/cobilab/magnet上自由访问。索引项 - 数据压缩,生物信息学,计算生物学,测序读取,数据滤波器
本文研究了最小描述长度(MDL)与神经网络中Grokking现象之间的关系,提供了有关突然泛化的信息理论观点。Grokking,在扩展培训后突然概括了模型,它挑战了神经网络学习动态的常规理解。我们假设由MDL量化的内部表示形式的组合是此过程的关键因素。为了测试这一点,我们引入了一种基于权重修剪的新型MDL估计技术,并将其应用于不同的数据集,包括模块化算术和置换任务。由于神经网络的复杂,高维质以及缺乏量化内部代表性的明确指标,这种方法是具有挑战性的。我们的实验揭示了MDL还原与改善的概括之间存在很强的相关性,而MDL过渡点通常在或与Grokking事件相吻合。我们观察到Grokking与非怪异场景中不同的MDL演化模式,其特征是快速减少MDL,然后在前者中持续概括。这些发现提供了有关Grokking信息理论基础的见解,并建议在训练过程中进行MDL监测可以预测即将泛化。我们的工作有助于更深入地了解神经网络中的学习动态,并为预测机器学习模型中的概括提供了新的工具。
脑电图 (EEG) 是一种非侵入性工具,通过将电极放置在人体头皮上来测量大脑活动,从而检测神经元放电电压。虽然 EEG 技术存在信噪比差和仅捕获表面大脑活动等局限性,但它仍然是诊断癫痫和睡眠障碍等疾病的可靠方法 [ 1 ]。自动编码器 [ 2 ] 是一类特殊的神经网络,用作编码器-解码器对。编码器通过逐步减少各层的神经元数量,最终达到瓶颈层,将输入数据压缩为压缩表示,称为潜在空间。相反,解码器通过逐渐增加后续层中的神经元数量从这种压缩形式重建输入数据。这种压缩和重建过程使网络能够有效地捕获输入数据的显着特征。卷积变分自动编码器 (CVAE) [ 3 , 4 ] 通过合并卷积层扩展了此框架,使其特别适合处理图像数据。与标准自动编码器不同,CVAE 生成概率潜在空间。这种概率方法有助于学习稳健的特征,并增强模型生成类似于训练数据的新数据实例的能力。利用卷积层,CVAE 可以利用数据中的空间层次结构,从而增强其分析和重建图像数据中固有的复杂模式和纹理的能力。因此,CVAE 在要求详细
小芯片将 SOC 分解成复合部件,从而形成更小的芯片,然后可以将其封装在一起作为单个系统运行,从而提供潜在的优势,包括提高能源效率、缩短系统开发周期和降低成本。然而,在 AI 计算快速创新的推动下,需要封装方面的进步才能更快、更高效地将小芯片从研究转移到量产。
训练数据集。ECoG 数据的稀疏分解已被证实可以检测病理性 HFO 30, 31 。我们在此生成一个有效的稀疏时间编码,允许设计简单的规则来通过明确使用设备不匹配来检测癫痫样模式。3.3 测量视角
摘要在本文中,研究了晶格结构的扭转和压缩行为。PLA(聚乳酸)材料用于组装中,并通过增材制造方法产生。在实验研究中,通过数字图像相关系统(DIC)系统研究了结构和晶格行为。使用三个不同的单元电池模型创建的模型,作为trunch八浓度,trunch八光线,带有节点的身体对角线以及两个不同的,70 mm和140毫米,总长度大小。通过压缩和扭转实验研究了单位细胞模型的影响,细胞大小对结构的强度进行了研究。获得了最大压缩应力和最大扭转,并提出了其变形。由于细胞模型的结构与扭转兼容,因此在带有节点细胞模型的身体对角线和140 mM的身体对角线中确定了最高最大扭矩。在Trunch Octa Light细胞模型和140 mM细胞长度中确定最高的压缩应力。
健康大脑的有效功能取决于两个半球同源区域之间的动态平衡。这种平衡是通过脊间抑制作用促进的,这是大脑组织的关键方面。本质上,一个半球的兴奋性预测激活了其对应物的抑制网络,从而有助于形成周围的侧面网络(Zatorre等,2012; Carson,2020)。这些网络的形成实现了“截然不见”机制在获得神经元皮质水平的新功能方面起着至关重要的作用。它支持运动控制的发展(Mahan和Georgopoulos,2013; Georgopoulos and Carpenter,2015年),并增强了感官感知敏锐度(Kolasinski等,2017; Grujic et al。,2022)。因此,同源半球区域之间的相互作用调节控制人体段的网络的抑制 - 激发平衡,这对于自适应可塑性和学习过程至关重要(Das和Gilbert,1999; Graziadio等,2010)。在诸如疲劳之类的慢性疾病中,半球间的平衡至关重要(Cogliati dezza等,2015; Ondobaka等,2022),它会影响中风的严重程度(Deco和Corbetta,2011; Pellegrino,2011; Pellegrino et al。,2012; Zappasodi et al。 Al。,2013)。尤其是,已经观察到旨在缓解疲劳的神经调节干预措施恢复了原发性运动区域的生理同源性(Porcaro等,2019)和皮质脊柱(Bertoli等,2023年)。