在这项研究中,HPC 驱动的癌症研究为长期癌症幸存者带来了更好的结果。癌症检测和治疗方面的进步大大提高了存活率。但随着存活率的提高,需要尽量减少长期治疗相关的负面影响。特别是,接受放射治疗的儿童以后更容易患上由放射引起的继发性癌症(致癌作用)。研究人员在超级计算机模拟的帮助下进行了临床试验,这些试验有助于提高长期晚期癌症治疗的成功率。模拟驱动的研究产生了宝贵的数据,这些数据被用于指导临床和卫生政策决策
对称加密 使用对称加密(例如 AES),您的信息不易受到量子计算机的攻击。借助 AES 等强大的算法,密钥长度为 256 位的对称加密可提供足够的加密抵抗量子计算机的攻击。在您的组织内,您可以将现有的对称密钥长度增加到 256 位。对称加密还可用于补充您现有的安全性。使用某些 VPN 产品,可以使用对称共享密钥添加额外的安全层。您还可以通过对称安全连接来隧道传输由非对称加密保护的连接。通过这种方式,任何被拦截的信息仍可免受量子计算机攻击者的攻击。这里重要的是,共享对称密钥以防量子的方式交换,例如通过离线交换。NLNCSA 可以为政府组织提供有关已批准和其他产品的建议
量子启发式元启发法是一种将量子力学原理融入使用非量子机器的经典近似算法的求解器。由于量子原理的独特性,量子现象的启发及其在根本不同的非量子系统(而不是真实或模拟的量子计算机)中的实现方式提出了有关这些算法的设计及其结果在真实或模拟的量子设备中的可重复性的重要问题。因此,这项工作的贡献是回答这些问题的第一步,它试图找出现有文献中应该考虑或调整的关键发现,以构建可用于量子机器的混合或全量子算法。这是通过提出和研究四种启发式、模拟和真实的量子细胞遗传算法来实现的,据作者所知,这些算法是使用具有 32 个量子比特的量子模拟器和采用 15 个超导量子比特的真实量子机器在三个量子领域研究的第一个量子结构元启发法。使用 13 个真实实例将蜂窝网络中的用户移动性管理作为验证问题。使用 9 个比较指标对 6 种不同的算法进行了比较。还进行了彻底的统计测试和参数敏感性分析。实验可以回答几个问题,包括量子硬件如何影响所研究算法的搜索过程。它们还为量子元启发式设计开辟了新的视角。© 2021 作者。由 Elsevier BV 出版 这是一篇根据 CC BY-NC-ND 许可开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。
多肽序列向表达mRNA构建体的反向翻译是NP-硬化的组合优化问题。蛋白质序列中的每个氨基酸都可以由多达六个密码子代表,并且选择最大化表达概率的组合的过程称为密码子优化。这项工作研究了利用量子计算技术对密码子优化的潜在影响。将量子退火器(QA)与具有相同目标函数编程的标准遗传算法(GA)进行了比较。质量保证在识别最佳解决方案方面具有竞争力。还使用模拟器评估了基于门的系统的效用,从而发现,尽管当前几代设备在量子计数和连接性方面都缺乏硬件要求,以解决现实的问题,但未来的一代设备可能高效。
手稿版本:已发布版本 WRAP 中呈现的版本是已发布版本(记录版本)。 永久 WRAP URL:http://wrap.warwick.ac.uk/159323 如何引用:上面链接的存储库项目页面将包含有关从出版商处访问引用指南的详细信息。 版权和再利用:华威研究档案门户 (WRAP) 在下列条件下开放华威大学研究人员的此项工作。此处呈现的论文版本的版权 © 和所有道德权利属于个人作者和/或其他版权所有者。 在合理和可行的范围内,WRAP 中提供的材料在提供之前已检查其是否符合资格。完整项目的副本可用于个人研究或学习、教育或非营利目的,无需事先许可或收费。只要注明作者、标题和完整的书目详细信息,就会提供原始元数据页面的超链接和/或 URL,并且不会以任何方式更改内容。出版商声明:请参阅存储库项目页面的出版商声明部分,了解更多信息。如需更多信息,请联系 WRAP 团队:wrap@warwick.ac.uk
摘要生成随机数对于许多现实世界应用很重要,包括密码学,统计抽样和蒙特卡洛模拟。受测量的量子系统通过Born的规则产生随机结果,因此自然研究使用此类系统以生成高质量的随机数的可能性是很自然的。但是,当前的量子设备会受到错误和噪声的约束,这可能会使输出位偏离Uni-Form分布。在这项工作中,我们提出和分析两个方案,可用于增加带有Hadamard Gate的电路和嘈杂的量子计算机中的测量值时获得的位置的均匀性。这些协议可以在其他标准过程之前使用,例如随机性扩增。我们对量子模拟器和实际量子计算机进行实验,获得的结果表明,这些方案对于提高生成的局部的概率很有用,使其通过统计测试进行均匀性。
量子算法为传统方法解决起来成本高昂的计算问题提供了有效的解决方案。现在,可以使用公共量子计算机(例如 IBM 提供的量子计算机)来运行执行量子算法的小型量子电路。但是,这些量子计算机极易受到噪声的影响。在这里,我们介绍了量子电路噪声和连通性的重要概念,必须解决这些概念才能在量子计算机上获得可靠的结果。我们利用几个例子来展示噪声如何随电路深度而变化。我们介绍了 Simon 算法(一种用于解决同名计算问题的量子算法),解释了如何在 IBM 的 Qiskit 平台上实现它,并比较了在无噪声模拟器和受噪声影响的物理硬件上运行它的结果。我们讨论了 Qiskit 的转译器的影响,该转译器将理想的量子电路适配到量子比特之间连通性有限的物理硬件上。我们表明,即使是只有几个量子比特的电路,其成功率也会因量子噪声而显著降低,除非采取特定措施将其影响降至最低。 # 2021 由美国物理教师协会独家授权出版。https://doi.org/10.1119/10.0006204
摘要。当今的量子计算机提供了对高能物理激发的量子场论散射过程进行实时计算的可能性。为了遵循已建立的在欧几里得时间计算静态属性的成功路线图,开发新的算法来处理当前嘈杂的中尺度量子 (NISQ) 设备的局限性并建立使用不同设备取得的进展的定量指标至关重要。在本文中,我们报告了这些方向的最新进展。我们表明,Trotter 误差的非线性方面使我们能够采取比低阶分析建议的更大的步骤。这对于使用当今的 NISQ 技术达到物理相关的时间尺度至关重要。我们建议使用一个指数来平均准确计算的 Trotter 站点占用演化与 NISQ 机器上的实际测量值之间的差异的绝对值 (G 指数) 作为衡量标准,以比较从不同硬件平台获得的结果。我们使用具有四个站点的一维空间横向 Ising 模型,将此度量应用于多个硬件平台。我们研究了包括读出缓解和 Richardson 外推在内的结果,并表明基于对 Trotter 步长修改的分析,缓解测量非常有效。我们讨论了 Trotter 步长程序中的这一进步如何改善量子计算物理散射结果,以及如何将这一技术进步应用于其他机器和噪声缓解方法。