化学催化剂在许多行业中都起着重要作用,量子计算机可以帮助识别使关键过程更安全,更高效的催化剂,并使人们和环境受益。例如,氨是世界上最常见的工业化学物质之一,用作农业肥料以及化学制造和药品。没有氨,我们将无法维持世界当前的人口。但是,氨产生需要令人难以置信的高温和压力,并且仅贡献了全球温室气体排放的2-3%。更有效地模拟用于产生氨的化学反应可以帮助确定使氨制造过程更有效和降低排放的方法。
解决电子结构问题代表了量子计算机的一个有前途的应用领域。目前,人们投入了大量精力设计和优化近期量子处理器的量子算法,目的是使用有限的量子资源在选定的问题实例上超越经典算法。这些方法仍有望具有防止大规模和批量系统量子模拟的运行时间。在这项工作中,我们提出了一种策略,使用在量子模拟数据上训练的机器学习潜能将量子计算方法的范围扩展到大规模模拟。在当今的量子环境中应用机器学习潜能的挑战来自于影响电子能量和力的量子计算的几种噪声源。我们研究了选择各种噪声源的机器学习潜能的可训练性:统计、优化和硬件噪声。最后,我们从实际 IBM Quantum 处理器上计算的氢分子数据构建了第一个机器学习潜能。这已经使我们能够执行任意长且稳定的分子动力学模拟,优于所有当前分子动力学和结构优化的量子方法。
讲座-3 模糊逻辑当我们说模糊逻辑时,那就是我们在物理设备中遇到的变量,模糊数字用于描述这些变量,并且在设计控制器时使用此方法,它就是模糊逻辑控制器。 - 让我们采取三个陈述:零,几乎零,接近零。 - 零恰好是零,真值为 1 - 如果它几乎为 0,那么我可以认为在负 1 到 1 之间,0 附近的值是 0,因为这几乎为 0。
键盘这是最常见的输入设备。它具有字母和数字(称为位)键,用户可使用它们输入数据。键盘还有功能键和特殊键。 • 在大多数键盘中,字母都以标准设计排列,称为 QWERTY 布局。这种设计因键盘上顶行字母的前六个字母而得名。 • 数字(也称为位)位于顶行字母上方。键盘右侧通常有一组数字键,称为数字键盘。数字键盘中的键的排列方式便于计算。 • 功能键位于数字键上方,名为 F1 到 F12。这些键用于向操作系统发出特殊命令。让我们看看每个功能键可以做什么。
摘要本文的特定目的在于:为材料科学、化学或电子学等领域的读者提供利用其材料系统实施储层计算 (RC) 实验的概述。关于该主题的介绍性文献很少,绝大多数评论都提出了 RC 的基本概念,这些概念对于不熟悉机器学习领域的人来说可能并不简单(例如,参见参考文献 Lukoˇseviˇcius (2012 Neural Networks: Tricks of the Trade (Berlin: Springer) pp 659–686)。考虑到大量表现出非线性行为和短期记忆的材料系统可用于设计新颖的计算范式,这是令人遗憾的。RC 提供了一个使用材料系统进行计算的框架,该框架可以避免在硬件上实现传统的、功能齐全的前馈神经网络时出现的典型问题,例如最小的设备间变异性以及对每个单元/神经元和连接的控制。相反,可以使用随机的、未经训练的储存器,其中仅优化输出层,例如使用线性回归。在下文中,我们将重点介绍 RC 在基于硬件的神经网络中的潜力,以及相对于更传统的方法,以及在实施过程中需要克服的障碍。准备一个高维非线性系统作为特定任务的高性能储存器并不像乍看起来那么容易。我们希望本教程能够降低科学家试图利用他们的非线性系统进行通常在机器学习和人工智能领域执行的计算任务的障碍。与本文配套的模拟工具可在线获取 7 。
在当前嘈杂的中等规模量子 (NISQ) 体制下,人们设计了各种算法来取得实用的量子优势。这些 NISQ 算法大多数都是变分的,即基于变分定理。变分量子算法 (VQA) 17,18 可以通过将不需要量子属性的计算卸载到传统计算机上来显著减少量子电路深度。这个想法自然而然地源于尽可能少地使用量子计算机。VQA 是启发式的,依赖于一个按照某种方案进行优化的拟定电路。VQA 的一个相当大的缺点是这个优化过程需要许多测量,这个因素可能会限制或消除获得实用量子优势的机会。14 尽管存在这个缺点,但由于与当前硬件限制有关的原因,VQA 是迄今为止研究最多的量子算法类型。变分量子特征值求解器 (VQE) 19,20 是最著名的 VQA。然而,其他方法,如变分量子虚时间演化 (VarQITE),也是有竞争力的替代方案。21
服务组合适用于 HPC、AI 和 ML 以及云计算应用程序,免费提供(https://fenix-ri.eu/access)。应用程序评估遵循 PRACE(https://prace-ri.eu/)制定的同行评审原则。Fenix 的目标是服务于从多样化电子基础设施服务中受益匪浅的科学和工程领域,以促进其协作研究和数据共享。因此,它利用国家、欧洲和国际资助计划来实现维持电子基础设施服务的计算、存储和网络资源。也有类似的国家计划,例如美国 NSF XSEDE(https://www.xsede.org/)。然而,Fenix 引入了独特的方面:首先,它为领导级超级计算资源提供商定义了一个超越国界的联合研究电子基础设施架构;其次,它提供了统一的联合身份和访问管理解决方案。
探索和发现。人类开始变得富有创造力,因此对新事物的探索产生了发明和创造性价值创造。他们还学会了创造性破坏的过程,为新事物和“创新”腾出空间,通过让生活更美好、更友好的道路前进。这个过程从未停止,因为charaiveti或通往自我实现的漫长而无尽的旅程演变为让生活更有意义的咒语的新内容。人们开始通过加速的文明进程前进。这里的自我实现这个词不是从精神角度使用的,而是指自我实现。两种力量引领创新思维,让世界成为一个更美好、更轻松、更令人满意的生活场所。但满足感仍然无法满足。第一个是永恒的渴望,即了解事物以特定方式发生的原因以及在自然界中观察到的原因。这方面最重要的例子是牛顿发现的万有引力定律、可见光原理和运动定律。第二个是通过做一些可以消除人类痛苦的事情来实现自我实现。医学界的众多发明和发现就是明证。最近的一项发明是 LED 灯泡,以最大限度地减少用电,从而减少碳排放并节省成本。