我们采用了最近开发的功能性重归其化组方法,用于自旋系统,即所谓的Pseudo Majorana功能重归其化组,以研究有限温度下的三维自旋1 /2 Heisenberg模型。我们在简单的立方和pyrochlore晶格上研究未施工和沮丧的海森堡系统。将我们的结果与其他量子多体技术进行了比较,我们将降低了我们方法的高定量精度。,对于未铺设的类似于立方晶格的抗fiferromagnet排序,从一环数据的有限尺寸缩放中获得的温度偏离了误差控制的量子蒙特卡洛的结果约为5%,我们确定了我们的数据一致性,使我们的数据与既定的关键指标n cytermention n dimementialsientialsentions n dimensiential Heissen nisery Heisenberysensen concection concejeity concection concection。由于PMFRG的产生与QMC相吻合,但在系统沮丧时仍然适用,接下来,我们将Pyrochlore Heisenberg Antyromagnet视为一种典型的磁性磁性系统,并限制了我们两层静态同质性易感性与其他方法的近乎完美的一致性。我们进一步研究了由于量子和热闪光的结果,在自旋结构因子中的捏合点扩大,并在外推极极限t→0中进行了有限宽度。虽然向更高循环订单的扩展虽然有系统地改善了我们对磁性无序系统的方法,但在存在磁性或磁或者存在下增加ℓ时,我们也讨论了微妙的方法。总体而言,伪主要的功能重新归一化组是在量子磁性中具有强大的多体技术,并具有许多可能的未来应用。
抽象能够将他人的活动映射到自己的观点中,即使从很小的时候就开始是一种基本的人类技能。迈向理解这种人类能力的一步,我们介绍了EgoExolearn,这是一个大规模的数据集,该数据集在过程之后模仿人类的演示,在该过程中,个人在执行以exentric-exentric-view示范视频为指导的任务时记录了以自我为中心的视频。关注日常援助和专业支持中的潜在应用,Egoexolearn Conconconconconconconconconconcons conconce concection和示范视频数据涵盖了在日常生活场景和专业实验室中捕获的120小时的120小时。与视频一起,我们记录了高质量的凝视数据并提供了详细的多模式注释,并构建了一个游乐场,用于建模人类从不同观点桥接异步程序动作的能力。为此,我们提出了基准,例如跨视图协会,跨视图行动计划和跨视图所引用的技能评估以及详细的分析。我们期望EgoExolearn可以作为跨越观点弥合行动的重要资源,从而为创建能够通过在现实世界中观察人类进行缝隙学习的AI代理铺平了道路。数据集和基准代码可在https://github.com/opengvlab/egoeexolearn上找到。
生成功能多能细胞衍生的脑内皮细胞,用于在脑内皮细胞(BECS)中高度专业的内皮细胞(ECS)进行体外建模和血液脑屏障的体外建模,与其他各种细胞类型相互作用,例如星形胶质细胞和诸如血液脑障碍(BBB)的基础(BBB)。BEC具有独特的特性,包括紧密连接,选择性渗透性和特定的运输系统,这些特性将它们与其他组织中的内皮细胞区分开。这些细胞在维持稳态大脑功能以及调节免疫系统和神经系统之间的相互作用方面起着至关重要的作用。人类神经血管单元(NVU)的体外模型的发展取决于使用EC的使用,该模型可以忠实地概括多个关键的器官功能。人类多能干细胞(HPSC) - 衍生的BMEC(IBMEC)已被广泛用于此目的;然而,其细胞身份的转录组和功能表征表明,这些细胞是上皮屏障形成细胞(Epi-IBFC)而不是BMEC。在这里,我们描述了转录因子介导的策略的开发,以从HPSC中产生EC及其用于生成3D NVU模型的使用。我们报告说,两个EC转录因子SOX7和ERG的构型过表达将Epi-iBFC转换为成人血管ECS(SE-REC),表达EC基因曲目并响应炎症提示。此外,在2D和3D中与星形胶质细胞和周细胞的共同文化在SE-REC中诱导BBB特异性的转录谱。在功能上,与单独培养的EC相比,在3D微流体系统中与原发性脑周细胞和星形胶质细胞的共同培养可显着降低对生物蛋白的渗透性,而70 kDa葡萄蛋白的渗透性与单独培养的EC相比,主要是由于诱导的紧密连接蛋白Claudin-5和Beceception concection claudin-5 and beccantion centection beccention begencecnecnection-beccection centectection-becceent centection beccente cenecnectection。我们旨在使用这些重编程的SE-REC在体外开发更忠实的人BBB系统,以了解疾病机制并开发用于向大脑输送药物的方法。