生物分子凝聚物是一种无膜细胞器,它以动态和可逆的方式将生物分子区室化,以执行细胞功能。越来越多的证据支持这样一种模型,即凝聚物是癌症和神经退行性疾病等复杂疾病中失调的中心节点。因此,凝聚物修饰药物或 c-mods 是一种新颖的治疗方法。C-mods 表现出多种作用方式,包括从凝聚物中降解特定蛋白质或粘合生物分子以保持相关状态。在这张海报中,我们提供了基于凝聚物的药物发现活动的见解,并讨论了当前和未来的应用。
摘要由于偶极气中的量子相关性多体物理学以及基于合作量子状态的超快明亮辐射场的光学应用,因此超级荧光效应受到了广泛的关注。在这里,我们不仅展示了观察超荧光效应,还可以通过外部应用耦合光场的调节维度来控制激子合奏的合作状态。在一个在分布式bragg repetor上覆盖的钙钛矿量子点薄膜薄膜薄膜的轻度杂种结构中揭示了一种称为合作激子 - 波利顿的新的准粒子。在非线性阈值上方,极化缩合发生在具有同步激子的至关重要作用的下极化分支上的非零动量状态。从超级荧光到偏振子凝结的相变表现出线宽下降的典型特征,宏观相干性的增加以及加速的辐射衰减速率。这些发现有望为超亮性和非常规连贯的光源打开新的潜在应用,并且可以使合作效应用于量子光学元件。
迈克尔·P·马德(Michael P. 241- 1698 (ORNL) * E-mail: amoreo@utk.edu * Web Page: moreo/cm21/index.html Homework: * Due on Tuesday before the next class, after preceding Tuesday's assignment * Sent electronically to the professor as a PDF file * Late homework will not be accepted, and assignments will be listed in the webpage * Grade will be 30 points, normalized at the end of the semester,由于平均不包括最低年级 *的PDF格式解决方案,将通过电子邮件发送个人使用以进行个人使用,仅在中期考试中, *在课堂期间进行的两次中期考试(暂定)进行 *手写课堂笔记可以在考试中使用(不可用的电子设备允许的电子设备(允许电子设备)上课)上课: points per midterm exam * 30 points for homework * 10 points for class participation * 20 points for final exam Course Schedule: * Week #1-3: Chapters 1-3 in Marder textbook * Week #4-6: Chapters 4-6 in Marder textbook * First Midterm Exam: Thursday, February 25 * Week #7-9: Chapters 7-10 in Marder textbook * Second Midterm Exam: Thursday, April 1 * Week #10-15: Chapters 11-14 in Marder教科书 *期末考试:5月6日,星期四,下午3:30 - 6:00 PM住宿: *由于残疾而需要住宿的任何学生都应私下与教授联系以讨论其特定需求。迈克尔·P·马德(Michael P. 241- 1698 (ORNL) * E-mail: amoreo@utk.edu * Web Page: moreo/cm21/index.html Homework: * Due on Tuesday before the next class, after preceding Tuesday's assignment * Sent electronically to the professor as a PDF file * Late homework will not be accepted, and assignments will be listed in the webpage * Grade will be 30 points, normalized at the end of the semester,由于平均不包括最低年级 *的PDF格式解决方案,将通过电子邮件发送个人使用以进行个人使用,仅在中期考试中, *在课堂期间进行的两次中期考试(暂定)进行 *手写课堂笔记可以在考试中使用(不可用的电子设备允许的电子设备(允许电子设备)上课)上课: points per midterm exam * 30 points for homework * 10 points for class participation * 20 points for final exam Course Schedule: * Week #1-3: Chapters 1-3 in Marder textbook * Week #4-6: Chapters 4-6 in Marder textbook * First Midterm Exam: Thursday, February 25 * Week #7-9: Chapters 7-10 in Marder textbook * Second Midterm Exam: Thursday, April 1 * Week #10-15: Chapters 11-14 in Marder教科书 *期末考试:5月6日,星期四,下午3:30 - 6:00 PM住宿: *由于残疾而需要住宿的任何学生都应私下与教授联系以讨论其特定需求。*与Hoskins Library的865-974-6087联系的残疾人服务办公室进行协调。现在可为有记录残疾学生提供住宿!这是固态和软凝结物理学的更新版本,对该主题提供了全面的介绍。第二版以第一版为基础,在探索最新发现的同时,在凝结物理物理学中提供了坚实的基础。有数十个新数字,实验数据和经典主题,这本书巩固了过去50年的进步。更新版本涵盖了基本主题,例如乐队理论,运输理论和半导体物理学,以及诸如准晶体,相位分离动力学,颗粒状材料,量子点,浆果相,量子厅效应和Luttinger液体等现代区域。它还研究了电子动力学,电子,超导性和软物质物理,包括液晶,聚合物和流体动力学。本书具有理论与实验之间的经常比较,突出了协议和未解决的问题。本版带有来自实验和章节问题的新图像,包括计算练习,为学生,专业人士,工程师,数学家,材料科学家和研究人员提供了宝贵的资源,这些领域的各个领域,他们试图从现代的角度了解材料科学的量子和原子质基础。(使用“添加拼写错误(SE)”方法重写
Michael L. Nosella, 1 , 2 , 7 Tae Hun Kim, 1 , 2 , 3 , 4 , 7 , 8 Shuya Kate Huang, 1 , 2 , 3 , 4 Robert W. Harkness, 1 , 2 , 3 , 4 Monica Goncalves, 5 Alisia Pan, 1 Maria Tereshchenko, 2 Siavash Vahidi, 5 John L. Rubinstein, 1 , 2 , 6 Hyun O. Lee,2 Julie D. Forman-kay,1,2 *和Lewis E. Kay 1,2,2,2,2,3,4,9,9, * 1分子医学计划,生病儿童医院,多伦多,多伦多,M5G 0A4,加拿大2,加拿大2,多伦多,多伦多大学,多伦多大学,M5S 1A8,M5S 1A8,CANACE 3,MI5 STRON,MI5 SORICL STRONT,ME5 ME5 STRONICK MIRECTO 1A8, Canada 4 Department of Chemistry, University of Toronto, Toronto, ON M5S 1A8, Canada 5 Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada 6 Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1A8, Canada 7 These authors contributed equally 8 Present address: Department of Biochemistry, School of Medicine, Case Western Reserve University,克利夫兰,俄亥俄州44106,美国9铅联系 *通信:forman@sickkids.ca(j.d.f.-k.),lewiskay@utoronto.ca(l.e.k.)https://doi.org/10.1016/j.molcel.2023.12.019
我是一位文人 我是一位文人 ... QDWLRQ FDUWH GH SXSLOOH GH OD QDWLRQ RX DWWHVWDWLRQ GH O¶21$& 2IILFH 1DWLRQDO GHV $QFLHQV &RPEDWWDQWV چ 8Q FHUWLILFDW GH SRVLWLRQ PLOLWDLUH SRXU OH PLOLWDLUH HQ DFWLYLWp GDWp GH PRLQV GH WURLV PRLV j OD GDWH GH O HQYRL GX GRVVLHU VLJQp GH O¶DXWRULWp KLpUDUFKLTXH HW PHQWLRQQDQW OHV GDWHV G HQWUpH HW GH ILQ GH VHUYLFH چ 8QH SKRWRFRSLH GX WLWUH GH SHQVLRQ GH UpYHUVLRQ VL OH SDUHQW PLOLWDLUH HVW GpFpGp ؆ 8QH SKRWRFRSLH GX WLWUH GH SHQVLRQ PLOLWDLUH HW QRQ GX EXOOHWLQ GH YHUVHPHQW GH OD SHQVLRQ RX GH O DUUrWp GH UDGLDWLRQ GHV FRQWU{OHV DYHF GURLW j SHQVLRQ LPPpGLDWH RX GLIIpUpH ؆ 8Q編輯 編輯 VLJQDOpWLTXH HW GHV VHUYLFHV PLOLWDLUHV VLJQp GH O¶DXWRULWp TXL O¶D GpOLYUp SRXU OH PLOLWDLUH UDGLp GHV FDGUHV RX UD\p GHV FRQWU{OHV SRXU UDLVRQ GH VDQWp VXLWH j XQH PDODGLH RX XQH EOHVVXUH UHFRQQXH LPSXWDEOH DX VHUYLFH ۆ 8Q pWDW VLJQDOpWLTXH HW GHV VHUYLFHV VLJQp GH O¶DXWRULWp TXL O¶D GpOLYUp MXVWLILDQW XQ HQJDJHPHQW PLQLPXP GH DQQpHV GDQV OHV $UPpHV SRXU OH PLOLWDLUH GX UDQJ UD\p GHV FDGUHV RX UDGLp GHV FRQWU{OHV 1RWD / HV DQQpHV HIIHFWXpHV DX WLWUH GX VHUYLFH QDWLRQDO DFWLI 61$ HW DX WLWUH GX YRORQWDULDW VHUYLFH ORQJ 96/ QH VRQW SDV FRPSWDELOLVpHV ؆ 7RXWHV SLqFHV MXVWLILDQW G XQ PLQLPXP GH DQQpHV G HQJDJHPHQW GDQV OD UpVHUYH RSpUDWLRQQHOOH DX HU MDQYLHU GH O DQQpH G DGPLVVLRQ GDQV OH O\FpH FRSLH GH WRXV OHV FRQWUDWV RX pWDW VLJQDOpWLTXH HW GHV VHUYLFHV VLJQp GH O¶DXWRULWp TXL O¶D GpOLYUp PHQWLRQQDQW WRXWHV OHV GDWHV GH GpEXW HW GH ILQ GH WRXV OHV FRQWUDWV GDQV OD UpVHUYH RSpUDWLRQQHOOH 1RWD 6HXOHV OHV DQQpHV G¶HQJDJHPHQW GDQV OD UpVHUYH RSpUDWLRQQHOOH SRVWpULHXUHV DX RFWREUH VHURQW SULVHV HQ FRPSWH FI FUpDWLRQ GH OD UpVHUYH RSpUDWLRQQHOOH DX YX GH OD /RL Q GX RFWREUH SRUWDQW RUJDQLVDWLRQ GH OD UpVHUYH PLOLWDLUH HW GX VHUYLFH GH GpIHQVH
如果内部审查后您仍不满意,您可以根据《信息自由法》第 50 条的规定直接向信息专员提出投诉。请注意,信息专员通常不会在国防部内部审查过程完成之前调查您的案件。信息专员的联系方式:信息专员办公室,Wycliffe House, Water Lane, Wilmslow, Cheshire, SK9 5AF。有关信息专员的职责和权力的更多详细信息,请访问专员网站 https://ico.org.uk/。
多梳抑制复合物 1 (PRC1) 强烈影响 3D 基因组组织,介导目标基因座的局部染色质压缩和聚集。几种 PRC1 亚基能够在体外通过液-液相分离形成生物分子凝聚物,并且在细胞中标记和过表达时也是如此。在这里,我们使用可以破坏液体状凝聚物的 1,6-己二醇来检查内源性 PRC1 生物分子凝聚物对 PRC1 结合基因座的局部和染色体范围聚集的作用。使用成像和染色质免疫沉淀,我们表明,PRC1 介导的目标基因组基因座(在不同长度范围内)的染色质压缩和聚集可以通过向小鼠胚胎干细胞中添加并随后去除 1,6-己二醇来可逆地破坏。多梳结构域和簇的解压缩和分散不能完全归因于 1,6-己二醇处理后染色质免疫沉淀检测到的 PRC1 占有率降低,因为添加 2,5-己二醇对结合有类似的影响,尽管这种酒精不会干扰 PRC1 介导的 3D 聚类,至少在亚兆碱基和兆碱基尺度上不会。这些结果表明 PRC1 分子之间的弱疏水相互作用可能在多梳介导的基因组组织中发挥作用。
b'Inatruction fermi液体范式(1,2)是现代冷凝物质理论的基石之一,提供了多体系统的有效描述,其基本激发是弱相互作用的费米金准式晶粒。费米液体的理论提供了理解为什么金属中的传导电子基本上是非相互作用的颗粒。费米液体可以以纵向密度振荡的形式支持集体模式,这些振荡与经典流体中的声音类似。它们的传播取决于该模式的角频率\ xcf \ x89是否高于或低于粒子间碰撞速率(3)\ xcf \ x84 1 coll。液体3他是一种中性的费米液体,是第一个从第一个声音模式(\ xcf \ XCF \ x89 \ xcf \ xcf \ x84 1 coll,即在流体动态状态)到零1 col(\ xcf xcf xcf xcf xcf xcf)(\ xcf \ xcf \ xcf \ xcf \ xcf \ xcf \ xcf \ x,观察到Coll,即,在无碰撞状态中)(4)。在具有远距离库仑相互作用的电子费米液体中,其中电子电子(EE)散射时间\ xcf \ x84 EE起着\ xcf \ x84 coll的作用,第一,零声折叠到Plasmon模式(5)。在这种模式下,从'
半导体器件、LED、MEMS、阻隔膜和许多其他先进制造工艺中使用的薄膜沉积和蚀刻技术需要对“湿润”表面进行精确的温度控制,从化学前体输送到废气处理系统。在沉积和蚀刻技术中,可冷凝蒸汽和反应性化学物质可以在前体进料管线、工艺室、连接到工艺室的仪器和管线、废气管理系统、阀门和系统的其他“湿润”区域的内表面上产生冷凝物和/或固体沉积物。同样,其他来源可以通过一种粘附方法通过材料转移和沉积涂覆这些区域。当前体不保持液态或气态时,固体或冷凝物会改变前体输送速率和/或气体电导率,从而改变工艺和工艺控制参数。虽然工艺控制算法可以在一定程度上补偿这些变化,但控制特性的漂移通常会导致薄膜参数发生未被发现的变化,这些变化可能会因运行间或系统间差异而超出规格,从而影响产品产量。此外,限制或避免排气管内的物质沉积可以显著减少维护停机时间要求。
生物分子冷凝物,Banani等人首先创造的术语。仅6年前(Banani等人2017),是纳米或微观,细胞内或细胞外组件,通常通过液态液相分离形成,并且具有选择性浓缩或隔离生物分子的能力,主要是蛋白质和核酸(Emenecker等人。 2021; Mitrea等。 2022; Mountourakis等。 2023)。 我们所知道的生物分子冷凝物之间存在显着的组成和结构多样性,范围从经典的无膜无ga nelles,例如核仁和吡啶样型到由相同类型的蛋白质分子制成的单分量冷凝物。 生物分子冷凝物的这种多样性,以及它们在生活的所有王国中的普遍发生,以及对大量发育和环境sig nals的反应,表明蛋白质和核酸的凝结是生物和避相化学的关键物理化学过程。 在过去几年中,对研究生物裂块冷凝水的浓厚兴趣并没有绕过植物生物学,因此在植物细胞中释放有关此热门话题的第一个焦点问题是及时的。2021; Mitrea等。2022; Mountourakis等。2023)。我们所知道的生物分子冷凝物之间存在显着的组成和结构多样性,范围从经典的无膜无ga nelles,例如核仁和吡啶样型到由相同类型的蛋白质分子制成的单分量冷凝物。生物分子冷凝物的这种多样性,以及它们在生活的所有王国中的普遍发生,以及对大量发育和环境sig nals的反应,表明蛋白质和核酸的凝结是生物和避相化学的关键物理化学过程。在过去几年中,对研究生物裂块冷凝水的浓厚兴趣并没有绕过植物生物学,因此在植物细胞中释放有关此热门话题的第一个焦点问题是及时的。