电子带结构,尤其是导带尾部处的缺陷状态,主导电子传输和在极高的电场下介电材料的电降解。然而,由于在检测到极高的电场的电传导时,即介电的挑战(即预损伤),介电带中的电子带结构几乎没有得到很好的研究。在这项工作中,通过现场预击传导测量方法探测聚合物电介质纤维的电子带结构,并与太空电荷限制 - 电流光谱分析结合使用。根据聚合物电介质中的特定形态学障碍,观察到具有不同陷阱水平的导带处的缺陷状态的指数分布,实验缺陷态也表明,与密度函数理论的状态密度相关。这项工作中所证明的方法桥接了分子结构确定的电子带结构和宏电导行为,并高度改进了对控制电崩溃的材料特性的高度改进,并为指导现有材料的修改以及对高电气纤维应用的新型材料的探索铺平了一种方式。
Volume conduction models of the head are widely used for source reconstruction of electro- (EEG) and magnetoencephalography (MEG) activity ( Malmivuo and Plonsey, 1995 ; Nunez and Srinivasan, 2006 ; Hansen et al., 2010 ), and are used to understand and optimize the effects of electrical ( Neuling et al., 2012 ; Rampersad et al., 2014 )和磁性脑刺激(Janssen等,2013),用经颅电气,深脑和磁刺激(TES,DBS和TMS)颅内和颅外应用。尽管有许多模型研究可以通过比较不同的模拟模型来量化电势数值的准确性(在EEG情况下)和磁场(在MEG情况下)(在MEG情况下),但研究了较少的研究研究,研究了人类和模拟的Elliss and ush and droissells and and and and and and and and and and eSte and and and and and and and and and and and and and and and and and and and。 Al。,2017)。体积传导模型的几何,电和数值方面是固有的。例如,BEM假设几何形状由具有同质和各向同性的电导率的嵌套隔室组成,从而导致对三角形的表面网格之间的边界进行几何描述,其中大多数BEM的实现都需要触摸或相交的情况,并且在deSect and triangles不得不触摸或相互交织。另一个例子是白质传导率的假设是各向异性,它将数值方法的选择限制为FEM或FDM。涉及计算机模拟的验证研究中经常采用的策略是将重点放在其中一个或两个因素上,并保持其余方面固定。先前的工作表明,由体积传导模型产生的潜在的准确性取决于许多因素,例如模型的几何代表(Vorwerk等,2014),不同组织的电导率(Oostendorp等,2000,2000; Aydin等,2014; Aydin et al。,2014年),Sensers nermane alser(Cuplmane alser),Etermane et ner ner ner ner ner ner ner ner ner ner ner。 2020a),来源的表示[例如,偶极子(De Munck等,1988)或双梁(Vermaas等,2020b)],以及用于解决数学问题的方法[例如,具有分析公式(De Munck and Peters,De Munck and Peters,1993; Zhang,1995; Zhang; Mosher et efiment; Mosher等人,2001年; Oostenveld和Oostendorp,2002年; Akalin-Acar和Gençer,2004元素方法(Marin等,1998; Schimpf等,2002; Miinalainen等,2019)]。通过在模型中包括高分辨率的解剖学细节,例如CSF,紧凑型和海绵状的骨骼部分,颅骨,血管或dura的骨骼部分需要高分辨率,需要在模型中进行高分辨率,以便在模型中具有足够的地理位置,以使其具有足够的详细信息, 是在模型中包括高分辨率的解剖学细节,例如CSF,紧凑型和海绵状的骨骼部分,以使其具有足够的地理位置的详细信息,以使其具有足够的详细信息,以使其具有足够的详细信息,以使其具有足够的详细信息, 进行了特定的联系。 ; Piastra等人,2018年)。 在Nüßing等人中。 (2016),例如,头部模型的几何形状保持恒定,并且解决了正向问题的数学方法。 Piastra等人。 vorwerk是在模型中包括高分辨率的解剖学细节,例如CSF,紧凑型和海绵状的骨骼部分,以使其具有足够的地理位置的详细信息,以使其具有足够的详细信息,以使其具有足够的详细信息,以使其具有足够的详细信息, 进行了特定的联系。 ; Piastra等人,2018年)。 在Nüßing等人中。 (2016),例如,头部模型的几何形状保持恒定,并且解决了正向问题的数学方法。 Piastra等人。 vorwerk是在模型中包括高分辨率的解剖学细节,例如CSF,紧凑型和海绵状的骨骼部分,以使其具有足够的地理位置的详细信息,以使其具有足够的详细信息,以使其具有足够的详细信息,以使其具有足够的详细信息, 进行了特定的联系。 ; Piastra等人,2018年)。 在Nüßing等人中。 (2016),例如,头部模型的几何形状保持恒定,并且解决了正向问题的数学方法。 Piastra等人。 vorwerk进行了特定的联系。 ; Piastra等人,2018年)。 在Nüßing等人中。 (2016),例如,头部模型的几何形状保持恒定,并且解决了正向问题的数学方法。 Piastra等人。 vorwerk进行了特定的联系。 ; Piastra等人,2018年)。在Nüßing等人中。 (2016),例如,头部模型的几何形状保持恒定,并且解决了正向问题的数学方法。 Piastra等人。 vorwerk在Nüßing等人中。(2016),例如,头部模型的几何形状保持恒定,并且解决了正向问题的数学方法。Piastra等人。vorwerk(2018),更改了数值方法和源模型,而几何形状保持恒定。
摘要 目的:心动过缓是由于心脏自律性受抑制、复极化延长或传导减慢所致。ERG 通道介导心脏动作电位中的复极化电流 I Kr,而 T 型钙通道 (TTCC) 参与哺乳动物的窦房起搏点和房室传导。斑马鱼已成为人类心脏电生理学和疾病的宝贵研究模型。在这里,我们研究了 ERG 通道和 TTCC 对斑马鱼幼虫起搏点和房室传导的贡献,并确定了引起房室传导阻滞的机制。方法:在心脏中表达比率荧光 Ca 2 + 生物传感器的斑马鱼幼虫用于测量体内跳动心脏的 Ca 2 + 水平和节律,同时测量收缩和血流动力学。房室延迟(心房和心室 Ca 2 +瞬变开始之间的时间)用于测量脉冲传导速度,并区分慢传导
金属 - 绝缘子 - 金属(MIM)电容器对于集成电路(ICS)至关重要。它们可以通过多种方式使用,例如解耦和过滤。高电容密度,低泄漏电流和小二次电压系数(a)是MIM电容器良好电性能的信号。为了获得高电容密度,可以使用高介电常数(K)材料,例如TA 2 O 5,HFO 2,Al 2 O 3,TiO 2和ZRO 2 [1-4]。Zro 2薄膜被认为是这些高k材料中的强大候选者,可以替代传统的介电材料SIO 2和SI 3 N 4,因为它具有许多优势,例如,高击穿电场,高介电结构和较大的能隙宽度[4]。有人研究了单个ZRO 2电介质MIM电容器,并获得了高电容密度,但是泄漏电流和值很差[5]。在这里,我们介绍了Al 2 O 3和SiO 2层以改进上述两个参数,因为Al 2 O 3的较大带隙为8.8 eV,SIO 2的较大频带差距为负值,因此Al 2 O 3 /Zro 2 /Zro 2 /Zro 2 /Zro 2 /Zro 2 /Zro 2 /Al 2 O 3(Azsza)结构MIM Capicitors设计了。需要强调的是,AZSZA结构是在相同的原子层沉积(ALD)系统中制备的。这不仅降低了实验的复杂性和成本,还降低了污染和引入杂质的可能性。因此,这是一种在
由于非热微/纳米级声子群,热传输超过体积热传导 Vazrik Chiloyan a , Samuel Huberman a , Alexei A. Maznev b , Keith A. Nelson b , Gang Chen a * 1 a 麻省理工学院机械工程系,美国马萨诸塞州剑桥 02139 b 麻省理工学院化学系,美国马萨诸塞州剑桥 02139 虽然经典的尺寸效应通常会导致有效热导率降低,但我们在此报告
孕妇中抽象的阳性抗RO/SSA和抗LA/SSB抗体IE与胎儿先天性心脏障碍(CHB)密切相关。增加胎儿心肌心动膜的回声性是孕产妇自身免疫性疾病的鲜为人知的节日之一。在对过去十年(2010- 2019年)在我们的胎儿医学单位的数据的重新观察分析中,我们确定了在第二个妊娠中期的九个胎儿,隔离的九个胎儿,孤立的没有CHB的内部甲虫的回声性增加。在三种情况下,母亲患有预先存在的自发性疾病。评估回声胎儿心脏后,其他人被诊断为阳性自身免疫性抗体。一个胎儿在33周后出现了一级心脏块,而另一个胎儿在演示后三周具有二级心脏块。没有胎儿死亡率。所有人都活出生。一个患有心动过速和心室功能障碍的胎儿在出生后的几天内死亡。两个带有心脏障碍的婴儿都是稳定的,并且在医疗随访中,而其他婴儿则保持无症状。似乎是由影响内部心肌的母体自身抗体引起的胎儿疾病,但会保留传导系统。在具有回声心脏的胎儿中,评估母体自身免疫
摘要:本研究致力于开发一种模型,用于计算各种配置的薄壁直接沉积过程中产生的瞬态准周期温度场。该模型允许随时计算直接沉积过程中壁内的温度场、热循环、温度梯度和冷却速率。沉积壁内的温度场是根据移动热源非稳态热传导方程的解析解确定的,同时考虑到向环境的热传递。根据热源作用在每个过程中产生的瞬态温度场的叠加原理,计算热积累和温度变化。所提出的温度场计算方法可以令人满意地准确描述壁内的传热过程和热积累。通过与实验热电偶数据的比较证实了这一点。它考虑了壁和基板的尺寸、层与层之间的功率变化、各道次之间的暂停时间以及热源轨迹。此外,该计算方法易于适应同时采用激光和电弧热源的各种增材制造工艺。
纳米结构的氧化锆和黄金膜(NS-AU/ZRO X)已被证明为具有非线性和滞后电气行为的特征,具有短期记忆和增强/抑郁活性。在这里,我们研究了调节纳米结构双层Au/Zro X膜的非线性行为的传导机制。尤其是,我们遵循Chua对综合系统的方法进行了研究,并分别对膜中的离子迁移和电子传输进行了建模。双层纳米结构系统所表现出的传导机制受到纳米形态的强烈影响,纳米形态由于电刺激而动态变化。沿微观结构中的瓶颈和边缘沿着强烈的本地电场和高迁移率促进了结构重排。电子传输是电极界面处的Schottky屏障和块状纳米材料中的Poole-Frenkel效应。在这里讨论了Poole-Frenkel效应的模型,以在高应用场机制中包括库仑陷阱的饱和;提出的模型已通过具有不同的扫描速度和不同温度(从300至200 K)的实验电压坡道进行了验证,以及功率指数参数分析。
通过电解质选择作者揭示了分子量对糖化聚噻吩的混合传导的影响:Joshua Tropp,A,†Dilara Meli,B,B,†Ruiheng Wu,C Bohan Xu,B Samuel B.Hunt,D Jason D. Azoulay,D Bryan D. Paulsen,Jonathan Rivnay,A A A A A A A A A A A A A S NORTON WESTERN UNIXICANN,WESWESTERN UNIXICY,EVANSTON,伊利诺伊州伊利诺伊州60208,美国材料科学与工程系,伊利诺伊州伊利诺伊州伊利诺伊州60208,美国伊利诺伊州伊利诺伊州伊利诺伊州伊利诺伊州伊利诺伊州伊利诺伊州伊利诺伊州伊利诺伊州伊利诺伊州伊利诺伊州伊利诺伊州伊利诺伊州伊利诺伊州伊利诺伊州伊利诺伊州伊利诺伊州伊利诺伊州伊利诺伊州伊利诺伊州伊利诺伊州伊利诺伊州伊利诺伊州。州D州D。尚未彻底探索的一个重要特征是分子量对OMIEC性能的作用。在这项工作中,我们检查了一系列原型糖化的聚噻吩材料(P3meeet),系统地增加了有机电化学晶体管(OECTS)内的分子量 - 一种用于研究混合运输的普通测试型。我们发现,超出中间分子量的性能有所改善,但是,这种关系是电解质依赖性的。Operando分析表明,在NaCl中溶解在NaCl中的大量肿胀可能会因破坏结晶石电荷渗透而在NACL中造成巨大肿胀。这些发现证明了分子量和电解质组成的重要性,以增强OMIEC的性能。TOC ImageTOC Image通过在KTFSI中的操作揭示了分子量的作用,因为掺杂通过阳离子驱动而发生,从而防止了有害的肿胀并保持过敏性途径。
抽象背景:周围神经病是糖尿病的严重并发症,它具有社会经济后果以及生活质量的降低。早期的神经性过程识别和管理可以改变其过程,并大大降低相关的发病率和死亡率。这项研究确定了长期血糖控制对2型糖尿病患者(T2DM)患者的糖尿病周围神经病的影响。方法:在喀土穆的国家神经科学中心和易卜拉欣·马利克医院进行了一项基于医院的研究。招募了所有18岁以上且拥有T2DM少于10岁的人。使用公认的技术,BMI,HBA1C水平和神经传导研究(NCS)。使用社会科学统计软件包(SPSS),版本25.0软件分析了数据。P值≤0.05被认为是显着的。结果:在95例T2DM患者中,有52例是男性患者。我们的发现表明,随着糖尿病的持续时间的增加,感觉速度从64.07±3.22降至54.00±5.34,运动神经从63.39±2.38降至53.87±2.08(p = 0.05,p = 0.05,p = 0.003)。此外,随着糖尿病持续时间的增加,运动神经振幅的显着降低从8.79±3.11到6.94±1.84(p = 0.05)和感觉神经振幅从25.71±5.70到19.51±6.51(p = 0.003)。此外,当HB A1C> 6> 6 - 感觉速度从63.96±2.36到55.49±2.43(P = 0.03)(P = 0.03)和运动速度从63.00±2.59至2.59至2.59至2.59至2.59至51.44±1.66(p = 0.02)时,NCS的所有参数(速度和振幅)均下降。和感觉振幅从26.91±1.26降至20.85±2.1(p = 0.05),而运动振幅从6.88±3.55降至6.61±3.29(p = 0.05)。此外,感觉和运动振幅与BMI之间存在很大的(P = 0.05)。结论:高BMI和控制不良(高HBA1C)长期糖尿病对所有神经传导研究参数都有负面影响。