我们提出了一种高效且可扩展的分区方法,用于将具有局部密集和全局稀疏连接的大规模神经网络模型映射到可重构的神经形态硬件上。计算效率的可扩展性,即实际计算所花费的时间,在超大型网络中仍然是一个巨大的挑战。大多数分区算法还难以解决网络工作负载的可扩展性问题,即寻找全局最优分区并有效地映射到硬件上。由于通信被视为此类分布式处理中最耗能和最耗时的部分,因此分区框架针对计算平衡、内存高效的并行处理进行了优化,目标是低延迟执行和密集的突触存储,并尽量减少跨各个计算核心的路由。我们展示了高度可扩展且高效的分区,用于连接感知和分层地址事件路由资源优化的映射,与随机平衡分配相比,递归地显着减少了总通信量。我们展示了我们在具有不同稀疏度和扇出度的合成网络、小世界网络、前馈网络和果蝇大脑半脑连接组重建方面的成果。我们的方法和实际结果的结合表明,这是一条有希望扩展到超大规模网络和可扩展硬件感知分区的途径。
SPAINSAT NG programme successfully passes Critical Design Review Advanced technologies for fully reconfigurable secure communications Spanish space industry to integrate communications payload of both satellites in Madrid @AirbusSpace @Thales_Alenia_S #Hisdesat @EsaTelecoms @Partner_InOrbit #SpaceMatters #SpaceforLife #NextSpace Madrid, 20 December 2021 – The SPAINSAT NG计划成功地通过了另一个重要的里程碑,有效载荷的关键设计审查(CDR)和完整的卫星,包括与欧洲航天局(ESA)的PACIS 3合作项目的CDR元素。在验证X波段有效载荷开发模型的测试的良好进展后,该评论被宣布成功。这个重要的里程碑证实了Spainsat Ng卫星系统的设计和技术能力的鲁棒性。同时,它标志着卫星所有飞行元素制造的开始,并指出已经制造了较长的铅飞行设备,尤其是全电动的欧洲城市NEO NEO卫星平台。此外,第一颗卫星的通信模块Spainsat Ng I的结构已经在马德里TRES Cantos的Thales Alenia Space站点开始,以开始有效负载组件,集成和测试活动。“我们的共同收集者,空中客车防御和太空的技术团队以及西班牙和法国的Thales Alenia Space以及其余的分包商一起做得很棒,Hisdesat的工作也很出色,他的Hisdesat,扮演客户的行为”,评论MiguelGarcíaPriro,HisDesateSat的首席执行官MiguelGarcíaPriro。“同样,ESA和CDTI也以重要的方式参与了Pacis 3计划,ESA和Hisdesat之间的公共私人合作伙伴关系开发了卫星的最具创新性元素,尤其是X频段有效载荷,欧洲最先进的活跃天线,具有最先进的活性天线,以及Ka-Band的托盘,天线和机制。”“这个里程碑证实了卫星飞行元素的生存能力,随着新技术的发展,由空中客车在马德里开发,”西班牙空中客车空间负责人费尔南多·瓦雷拉(Fernando Varela)说。“我们的团队已准备好开始卫星有效载荷的集成,尤其是具有地理位置功能的轨道上可完全重新配置的新活跃天线的有效载荷。”“ CDR的成功和第一颗卫星在TRE Cantos的通信模块结构的到来标志着该项目的新重要阶段的开始,”西班牙Thales Alenia Space的首席执行官StéphaneTerranova说。“我们将第一次在西班牙进行两颗卫星的通信有效载荷的整合,这意味着为国家行业带来了定性的飞跃。”
我们在使用定制的互补金属 - 氧化物 - 氧化流程过程制造的绝缘子纳米线上,在硅中报告了双极栅极绘制的量子点。双极性是通过将栅极延伸到固有的硅通道上的高度掺杂的N型和P型末端来实现的。我们利用能够向硅通道提供双极载体储层的能力,以证明使用相同的电极来重新定义,并用相同的电极,带有孔或电子的双量子点。我们使用基于栅极的反射测量法来感知电子和孔双量子点的点间电荷过渡(IDT),从而实现了电子(孔)的最小整合时间为160(100)L s。我们的结果提供了将电子旋转与硅中电孔旋转的长相干时间相结合的机会。
2纽约大学化学系,纽约,纽约10003,美国 *通讯作者。电子邮件:bw@tsinghua.edu.cn(B.W.); ned.seeman@nyu.edu(n.c.s.)。抽象的分支DNA基序是所有合成DNA纳米结构的基本结构元素。但是,分支方向的精确控制仍然是进一步增强整体结构秩序的关键挑战。在这项研究中,我们使用两种策略来控制分支方向。第一个基于固定的霍利迪连接,该连接在分支点上采用特定的核苷酸序列,以决定其方向。第二个策略是使用角度构造支柱在分支点上使用柔性垫片固定分支方向。我们还证明,可以通过规范的Watson-Crick碱基配对或非典型的核酶相互作用(例如I-MoTIF和G-Quadruplex)动态地实现分支方向控制。具有从化学环境的精确角度控制和反馈,这些结果将使新型的DNA纳米力学传感设备和精确有序的三维体系结构。在过去的四十年中,随着DNA纳米技术的快速发展,多功能的DNA纳米结构具有越来越增强的复杂性[1] [1]。作为分支结构基序在DNA纳米结构中无处不在,对螺旋分支的精确角度控制是关键挑战之一。相比之下,几何控制在很大程度上避开了DNA网络设计。对这些方案的拓扑控制已在很大程度上通过序列设计,螺旋时期和连接连通性的处方[2]阐明。Angle and lattice morphology is generally observed to be an emergent property of topological self-assembly—indeed the tensegrity triangle, a hallmark three-dimensional (3D) DNA lattice [3] , has three attainable internal angles, 101 º, 111 º, and 117 º, which is an apparent result of lattice stress by changing the edge length in otherwise topologically-similar structures.考虑到这一点,在现场中,获得更高的结构顺序(包括拓扑和几何特性)仍然是一个关键的挑战,可以作为实现设计师纳米材料功能的更雄心勃勃的目标的基础(例如酶促活动,刚性晶体支架,固定的晶体支架,纳米粒子阵列等)。类似于减数分裂的移动霍利迪交界处的固定的四臂连接是DNA纳米技术中最早的结构图案[2A,4]。它不仅在由无脚手架的DNA“乐高”方法构建的纳米结构中广泛使用[5],而且还使用脚手架的DNA折纸方法在不同的结构中呈现[6]。已证明分支方向由分支点序列[7]和交叉类型[8]定义,这表明了精确几何控制的机会。这种合成性指出了具有精确和动态原子布置的高阶DNA纳米结构的可行性。
深度学习(DL)为实现航天器的自治,板载分析和智能应用程序提供了新的机会。然而,DL应用在计算密集型上,并且在辐射硬化(RAD-HARD)的处理器上通常不可行,传统上可以利用其商业商业现成的计算能力的一部分。商业FPGA和系统 - 芯片具有许多建筑优势,并提供了计算功能,以实现板载DL应用程序;但是,这些设备非常容易受到辐射诱导的单事件效率(SEE)的影响,可降低DL应用的可靠性。在本文中,我们提出了可重新配置的Convnet(Recon),这是可靠,高性能的语义分割的可重新配置加速框架。在侦察中,我们提出了选择性和自适应方法,以实现有效的方法,请参见缓解。在我们的选择性方法中,控制流部分受到三型冗余的有选择性保护,以最大程度地减少倾斜诱导的悬挂,并且在我们的自适应方法中,使用部分重新配置来调整数据流零件的缓解,以响应动态辐射环境。组合,这两种方法都使侦察能够最大程度地提高系统可行性,但要受到任务可用性约束。我们执行断层注射和中子照射,以观察侦察和使用可靠性建模的敏感性,以评估各种轨道案例研究中的侦察,以证明与静态方法相比,性能和能量效率的性能提高了1.5-3.0倍。
摘要 —本文研究了插电式混合动力汽车 (PHEV) 的不协调、协调和智能充电对微电网 (MG) 优化运行的影响,并结合了动态线路额定值 (DLR) 安全约束。当配电线路达到最大容量时,DLR 约束(尤其是在孤岛模式下)会影响 MG 馈线的载流量。为了克服任何线路中断或应急情况,智能 PHEV 可用于帮助提高电网安全性。但是,使用 PHEV 会导致更高的功率损耗和馈线过载问题。为了解决这些问题,本文采用了一种重构技术。一种启发式算法(称为基于集体决策的优化算法)用于克服问题的非凸性和非线性。采用无迹变换技术来模拟由太阳辐射、负载需求和天气温度引起的 DLR 不确定性,以及由不同的充电策略、正在充电的 PHEV 数量、充电开始时间和充电持续时间引起的 PHEV 不确定性。此外,设计了一种深度学习门控循环单元技术来预测可再生能源输出,以减轻可再生能源组件中的不确定性。部署了经过修改的 IEEE 33 总线测试网络来评估所提模型的效率和性能。
广泛地用于实现受到生活系统行为及其对各种物理和化学刺激的反应能力的启发,包括电荷和偶极子,压力,温度,湿度和磁场。[5-17]这些机械主动的结构通常设计为在预定义的参数范围内工作,在其外部可能无法根据需要做出响应。赋予合成折纸系统具有检测环境条件及其自己的状态模仿性质,实现反馈控制并增强其适应环境变化的能力的能力。需要机械的软传感器,以适应动作过程中的运动和变形才能有效与折纸进行整合。软执行器的标准方法已集中在基于商业电子和气动系统[18]的刚性设计上,或者是带有刺激响应材料的小规模平台。[19]前者太笨重了,无法复制生物系统中发现的无缝且温和的折叠模式,而后者缺乏传感器,因此反馈控制以积极指导其运动。实现柔软,功能性和薄折纸致动器需要在这两种方法之间进行合成,这可以通过使用电子皮(E-Skins),复合膜或水凝胶来介导。最近的工作通过证明本质上柔韧的应变[20,21]曲率,[22,23]和光学[24]传感器整合到软致动器中,从而实现了该协同作用的一些步骤。然而,这些示例集中在由没有多个折叠的单层材料制成的执行器上,因此不需要折纸时的组装过程中的运动跟踪。可以通过将磁敏感的e胶粘在软磁性执行器上,检测到各种襟翼或褶皱的位置和方向,从而检测出外部或固有或固有的(由执行器)磁场产生。专门用于磁性软执行器或磁性软机器人[1,25-29],该机器人是由带有嵌入式磁性颗粒的聚合物复合材料构建的,磁化状态的变化会极大地影响致动。[24,25,30–35]当磁性特性的这种变化是有目的的和骗局的时,它们对于允许以新的方式做出相同的结构非常有益。杂志执行器对施加磁场的响应是复合材料的磁化状态的特征,这对用于磁化的过程既敏感又敏感。
摘要 本文详细阐述了在存在互联能源枢纽的情况下,将重构作为灵活性来源,协调电力和天然气 (NG) 网络的优化调度。对于由多个发电单元、存储和转换技术以及天然气燃烧单元组成的能源枢纽系统,应捕捉天然气和电力载体之间的高度相互依赖性。首次在多能源系统中开发每小时重构能力,以增强最优电力调度和天然气消费模式。通过分别采用电力和天然气网络的稳态韦茅斯方程和交流潮流模型,研究了电力和天然气电网之间的现实相互依赖性。此外,为了处理与风电、负荷和实时电价的强烈不确定性相关的风险,采用了条件风险价值方法。在集成测试系统上实施了所提出的模型,并针对不同情况给出了仿真结果。研究了风险规避水平对可控机组运行成本和最优调度的影响。数值结果表明,可重构能力可将运行成本降低高达 7.82%。
摘要 - 本文介绍了双模式V波段功率放大器(PA)的设计,该功率放大器(PA)使用负载调制提高了功率退回(PBO)时的效率。PA利用可重新选择的两/四向电源组合器来实现两种离散的操作模式 - 满足功率和后退功率。Power Combiner采用了两种技术来进一步提高PBO的PA效率:1)使用具有不均匀转弯比的变压器的使用,以减少对两种模式和2模式之间的PA内核的阻抗差异的差异)使用拟议的开关方案,以消除与背部功率模式相关的泄漏电感(bpm)。两阶段PA的峰值增益为21.4 dB,分数BW(FBW)为22.6%(51-64 GHz)。在65 GHz时,PA的P SAT为 + 17.9 dBm,OP 1 dB为 + 13.5 dBm,峰值功率增加了效率(PAE),在全功率模式下为26.5%。在BPM中,测得的P SAT,OP 1 dB和峰值PAE分别为 + 13.8 dBm, + 9.6 dBm和18.4%。在4.5 dB后退时,PAE的点数增加了6%。PA能够在平均P OUT/PAE分别 + 13 dbm/13.6%的情况下扩增6 GB/S 16-QAM调制信号,EVM RMS为-20.7 dB。此PA在16 nm的FinFET中实施,占0.107 mm 2的核心面积,并在0.95-V电源下运行。
