©2024作者,在Springer Nature Limited的独家许可下。保留所有权利。本文只能下载供个人使用。任何其他用途都需要事先获得版权持有人的许可。记录的版本可在线在http://doi.org/10.1038/s41566-024-01386−2上获得。
在这项工作中,碳化硅(SIC)涂层通过脉冲化学蒸气沉积(CVD)成功生长。未在连续流中提供四氯化硅(SICL 4)和乙烯(C 2 H 4),而是以H 2作为载体和清除气体交替脉冲到生长室中。典型的脉冲CVD循环为SICL 4脉冲 - H 2净化 - C 2 H 4脉冲 - H 2吹扫。这导致了超符号SIC涂层的生长,在相似的过程条件下,使用恒定的流动CVD工艺无法获得。我们通过脉冲CVD提出了一个两步的SIC生长框架。在SICL 4脉冲期间,沉积了一层Si。在以下C 2 H 4脉冲中,该Si层被渗入,并形成SIC。据信SICL 4脉冲后,高氯表面覆盖范围可以通过生长抑制作用来实现超级生长。
过去二十年来,人们对量子信息理论的兴趣越来越浓厚,这是量子计算的基础,并向理论物理的各个分支进行了广泛的应用。尤其是,量子误差校正(QEC)是实现可容忍量子计算机与量子噪声(例如变形[1-5])的实验实现的关键。QEC代码是通过将量子状态(代码子空间)嵌入更大的希尔伯特空间来保护量子状态(代码子空间)免受错误的理论框架。在冷凝物理物理学中,构建了一大类QEC代码,以描述物质代码[6-8]和Fracton模型[9-12]等物质的拓扑阶段。另一方面,已经在高能理论中研究了全息代码[13-16],以了解一个较低维度的量子重力与量子场理论之间的全息二元性[17-19]。QEC代码已被利用来构建一组离散的二维形成共形场理论(CFTS),称为Narain Code CFT [20]。这概括了经典代码的手性CFT的结构[21],该代码长期很长时间[24,25]。narain代码CFT是骨CFT的,其光谱的特征是洛伦兹晶格与量子稳定器代码相关。Narain Code CFTS在模块化引导程序[26-28],搜索具有较大频谱差距的CFT [29,30]和全息
摘要我们计算研究Zika NS3解旋酶,这是一种使用ATP水解能进行核酸重塑的生物运动。通过经典和QM/MM模拟,我们探索了图案V的构象局势,该构象形象V连接了用于ATP水解和核酸结合的活性位点的保守环。由元磷酸组形成引发的ATP水解涉及由GLU286质子抽象激活的水分子的亲核攻击。基元V氢键通过Gly415骨干NH组与该水键合,从而有助于水解。当无机磷酸盐从镁离子的配位壳移开时,释放自由能,自由能被释放出来,从而诱导了基序V的构象构象构象构象构象形态的显着转移,以在Gly415 NH和Glu285之间建立氢键。Zika NS3解旋酶充当棘轮生物电动机,其基序V转变由Gly415的γ-磷酸在ATPase位点引导。
在医学成像中,表面配准被广泛用于对解剖结构进行系统比较,一个典型的例子是高度复杂的大脑皮层表面。为了获得有意义的配准,一种常见的方法是识别表面上的突出特征,并在它们之间建立低失真映射,将特征对应关系编码为界标约束。之前的配准工作主要集中在使用手动标记的界标和解决高度非线性的优化问题,这非常耗时,因此阻碍了实际应用。在这项工作中,我们提出了一种使用准共形几何和卷积神经网络自动检测和配准大脑皮层表面界标的新框架。我们首先开发了一个界标检测网络 (LD-Net),该网络允许根据表面几何形状在给定两个规定的起点和终点的情况下自动提取界标曲线。然后,我们利用检测到的界标和准共形理论实现表面配准。具体来说,我们开发了一个系数预测网络 (CP-Net),用于预测与所需基于地标的配准相关的 Beltrami 系数,以及一个名为磁盘 Beltrami 求解器网络 (DBS-Net) 的映射网络,用于从预测的 Beltrami 系数生成准共形映射,其中双射性由准共形理论保证。实验结果证明了我们提出的框架的有效性。总之,我们的工作为基于表面的形态测量和医学形状分析开辟了新途径。
Mariano Mariano,Fernando Batista,Maurel Manon,Anthony Bouillon,Laura Ortega,Anne Marie Wehenkel,Lucile骑士,Blondel Ahmed,Ahmed Haouz,Jean-François,
1 Sungkyunkwan大学(SKKU)的生物医学工程系,Suwon 16419,大韩民国。2神经科学成像研究中心,基础科学研究所(IBS),Suwon 16419,大韩民国。3 Sungkyunkwan大学(SKKU)的电气和计算机工程系,Suwon 16419,大韩民国。4韩国科学技术研究所生物医学研究中心,韩国共和国02792。5科学技术大学基斯特学院生物医学科学技术部,大韩民国首尔02792。6智能医疗保健融合,Sungkyunkwan University(SKKU),Suwon 16419,大韩民国共和国。7 Sungkyunkwan University(SKKU)的超级智能工程系,Suwon 16419,大韩民国。#作者同样贡献。
NDP52是一种自噬受体,涉及入侵病原体和受损细胞器的识别和降解。尽管NDP52是在核中首次识别的,并在整个细胞中表达,但迄今为止,NDP52尚无明显的核功能。在这里,我们使用多学科方法来表征NDP52的生化特性和核作用。我们发现,NDP52在文档启动位点具有RNA聚合酶II(RNAPII)的簇,并且其过表达促进了其他转录簇的形成。我们还表明,NDP52的耗竭会影响两个模型哺乳动物细胞中的总体基因表达水平,并且转录抑制作用会影响核中NDP52的空间组织和分子动力学。这将NDP52与依赖性转录中的角色联系起来。此外,我们还表明,NDP52与双链DNA(DSDNA)结合,并具有高度的a(DSDNA),并且这种相互作用会导致体外DNA结构的变化。这与我们的蛋白质组学数据一起表明与核小体重塑蛋白和DNA结构调节剂相互作用富集,这表明NDP52在染色质调节中的可能功能。总的来说,我们在这里发现了NDP52在基因表达和DNA结构调节中的核作用。
2 诊断工具箱:量子纠缠和共形场论.......................................................................................................................................................................................................................................5 2.1 量子纠缠....................................................................................................................................................................................................................................................................6 2.1.1 纠缠:不可分离性....................................................................................................................................................................................................................................................6 2.1.1 纠缠:不可分离性.................................................................................................................................................................................................................................................... 6 2.1.2 冯·诺依曼纠缠熵..................................................................................................................................................8 2.1.3 纠缠缩放..................................................................................................................................................................................10 2.1.4 协方差矩阵方法..................................................................................................................................................................................15 2.2 共形场论..................................................................................................................................................................................15 . . . . 19 2.2.1 共形不变性 . . . . . . . . . . . . . 19 2.2.2 希尔伯特空间形式 . . . . . . . . . . . . . . 22 2.2.3 最小模型 . . . . . . . . . . . . . . . . . 25 2.2.4 一个例子:格子伊辛模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .三十七
可容纳形状的电池对各种便携式电子设备非常感兴趣。在这项工作中,提出了基于添加剂制造(AM)技术和半固体电极(SSE)的组合,用于具有成本效益的可配合性能电池的新制造概念。制造过程分为两个步骤。首先,电化学细胞由基于立体光刻的技术(SLA)打印并随后组装。在第二步中,通过双注射机制将可流动的SSE注入细胞中,以并联引入两个SSE。发现细胞的注射器出口,细胞入口和形状在注射过程中起重要作用,但观察到SSE的制定会影响流变学和电化学特性。为了证明概念的证明,具有我们大学徽标形状的电池是使用基于Zn的和MNO 2的SSE制造的,该电池可实现高利用率(> 150 mAh g-1 mno 2),可接受的周期稳定性(0.45%h-1),从而显示出拟议的建议形状可行的indeboboble-table-table-table-table-table-table-explable-explable-explable-explable-explable-table-explable byter。最终将制造过程扩展到其他电池化学,从而提高了循环稳定性并确认制造概念的多功能性。