作为癌症治疗领域的最新技术之一,抗体药物偶联物 (ADC) 和双特异性抗体 (BsAb) 为癌症治疗提供了一种新方法,可最大限度地降低全身毒性并改善患者治疗效果。作为一家全球合同研究组织 (CRO),Worldwide Clinical Trials (Worldwide) 提供量身定制的解决方案,以促进 ADC 和 BsAb 的开发和批准。我们致力于肿瘤治疗创新,将科学严谨性与个性化关注相结合,在癌症治疗方面取得长足进步。
在法国排名第一,在欧洲排名第一,在世界第四位,古斯塔夫·鲁西西(Gustave Roussy)是全球专业知识的中心,完全致力于癌症患者。该研究所是巴黎萨克莱癌群的创始支柱。治疗创新和诊断突破的来源,该研究所每年欢迎近50,000名患者,包括3500名儿童和青少年,并开发了一种结合研究,护理和教学的综合方法。Gustave Roussy是稀有癌症和复杂肿瘤的专家,在生活的各个阶段都对所有癌症进行了治疗。它提供了将创新和人类结合在一起的个性化护理,并考虑了护理以及身体,心理和社会生活质量。在Vilejuif和Chevilly-Larue的两个地点有4,100名员工,Gustave Roussy汇集了高级癌症研究至关重要的专业知识; 40%的治疗患者被包括在临床研究中。要了解有关Gustave Roussy的更多信息,并遵循该研究所的新闻:www.gustaveroussy.fr/en,X,Facebook,LinkedIn,Instagram。
光敏剂必须满足以下标准才被认为适用于任何一种光治疗方法:强红光或近红外 (NIR) 吸收,以允许光深度穿透生物组织,暗毒性可忽略不计,副作用少,但在光照下具有高细胞毒性,在生物介质中具有良好的溶解性和稳定性,优先在癌组织中积累,并具有合适的清除率。3 对于 PDT 而言,当考虑更典型的 II 型方法时,光敏剂需要具有高的三线态量子产率 (ΦT) 和随后的高单线态氧量子产率 (ΦΔ),10,11 而对于 PTT,光敏剂必须通过非辐射衰变途径促进有效的光热转换(图 1),以产生足够高的细胞温度升高(例如至 >45°C)来诱导细胞死亡。 12,13 多种类型的纳米材料和分子光敏剂已被用于两种类型的光疗法。14 – 17 虽然纳米材料已被证明是光疗法的有效光敏剂,但其相对有限的可调性、较差的批次间重现性、广泛的尺寸分布、形态依赖性反应和未知的长期生物学效应可能使分子光敏剂成为更具吸引力的解决方案。12,13
抗体-药物偶联物 (ADC) 是新兴的抗癌靶向药物。目前对 ADC 的研究是在单层培养物上进行的,无法模拟肿瘤的生物物理特性。因此,需要能够更好地预测 ADC 在体内疗效的体外模型。在本研究中,我们旨在优化保留肿瘤结构特征的 3 维癌症球体系统,以测试两种 ADC(T-DM1 和 T-vcMMAE)的疗效。首先,建立了一组使用上皮性卵巢癌细胞系的可重复球体模型。随后,在 ADC 处理后表征了球体的表型变化。还研究了 ADC 渗透到 3D 肿瘤结构中的动力学。我们的数据显示,与单层培养相比,球体对 ADC 的敏感性较低。有趣的是,与单层培养相比,ADC 的小分子成分——细胞毒性有效载荷——在球体中的功效也显示出类似的下降。此外,我们还对 ADC 渗透动力学有了新的认识,并表明 ADC 可以在 24 小时内完全渗透到类似肿瘤的球体中。结果表明,尽管 ADC 作为大分子生物药物,其渗透动力学可能比小分子化合物(例如其细胞毒性有效载荷)更慢,但它们在 3D 结构中杀死癌细胞的能力相当。这可以通过以下事实来解释:每个抗体上都结合了多个细胞毒性有效载荷,这弥补了大分子的渗透缺陷。总之,我们的工作证实了肿瘤 3D 结构可能会限制 ADC 的治疗效果。不过,优化 ADC 设计(例如调整药物与抗体的比例)可以帮助克服这一障碍。
AptamerSareshorsingle-strandoligonucleotidesthatcanformsecondary和第三级结构,拟合高的目标和特异性的目标。它们是所谓的“化学抗体”,可以针对诊断和治疗应用中的特定生物标志物。通过指数富集(SELEX)对配体的系统演化通常用于适体的富集和选择,并且靶标可以是金属离子,小分子,核苷酸,蛋白质,细胞,细胞,甚至组织或器官或器官。由于适体的高特异性和独特的结合,适体,适体 - 药物缀合物(APDC)已证明它们在癌症靶向疗法的药物递送中的潜在作用。与基于细胞的生物反应器产生的抗体相比,适体是化学合成的分子,可以很容易地与药物结合并修饰。但是,常规的APDC使用接头将适体与活性药物结合在一起,这可能会对APDC的稳定性,释放药物的效率和吸毒能力增加更多关注。常规APDC中适体的功能就像一个无法完全执行适体优势的靶向部分。为了解决这些缺点,科学家已经开始使用主动核苷酸类似物作为APDC的货物,例如克罗法拉滨,Ara-guanosine,gemcitabine和loffiridine,以适度序列中的所有或一部分替代天然核苷酸的一部分。反过来,这些新型的APDC,适体核苷酸模拟药物共轭物显示出靶向效率的强度,但避免了复杂的药物接头名称并提高合成效率。更重要的是,这些经典的核苷酸模拟药物已经使用了多年,而适体核苷酸模拟药物共轭物不会增加任何未知的药物可药用风险,而是改善靶肿瘤的积累。在这篇综述中,我们主要总结了靶向癌症靶向疗法的适体偶联的核苷酸模拟药物。
摘要:癌症是全球主要死亡原因之一,仅在美国每年就有超过 160 万人患癌症。化疗等常见疗法会损害健康细胞并带来危险的副作用。为了寻找更安全的解决方案,科学家们转向了一个新的研究领域:靶向治疗。在过去十年中,人们的注意力已经转移到使用能够特异性靶向和识别癌细胞的物质,以最大限度地减少严重的副作用和对健康器官的损害。随着抗体-药物偶联物等靶向治疗的成功,一个新的研究领域——小分子-药物偶联物应运而生。小分子-药物偶联物是一个相对较新的领域,是一种更具成本效益和效率的癌症消除疗法。小分子-药物偶联物具有独特的机制和比以前的靶向疗法更快地消除癌细胞的潜力,为治疗学带来了新的视角。本综述利用当前的临床前和临床数据,探讨了小分子-药物偶联物的潜力和未来,并强调了与现有治疗方法的比较。此外,本综述强调了其新颖的科学机制,同时确定了更好地理解靶向癌症治疗的关键研究领域。
近年来,抗体-药物偶联物 (ADC) 已成为一种有前途的抗癌治疗剂,其中几种已获准用于治疗实体瘤和血液系统恶性肿瘤。随着 ADC 技术的不断改进和 ADC 可治疗的适应症范围的扩大,靶抗原的范围也不断扩大,并且无疑将继续增长。G 蛋白偶联受体 (GPCR) 是与多种人类疾病(包括癌症)有关的明确治疗靶点,是 ADC 的一个有前途的新兴靶点。在这篇综述中,我们将讨论 GPCR 过去和现在的治疗靶向,并描述 ADC 作为治疗方式。此外,我们将总结现有的临床前和临床 GPCR 靶向 ADC 的状态,并探讨 GPCR 作为未来 ADC 开发新靶点的潜力。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是此预印本版本的版权持有人,该版本发布于2025年2月1日。 https://doi.org/10.1101/2025.01.31.635969 doi:Biorxiv Preprint
TROP2 主要存在于人类上皮组织中,对胚胎-胎儿发育至关重要(5)。与正常组织相比,肿瘤组织中 TROP2 的表达存在差异性上调(6)。TROP2 是一种肿瘤相关钙信号转导蛋白,在许多上皮癌中过表达,它刺激癌细胞生长,并在多种人类癌症中上调(7-13)。多项研究表明 TROP2 在各种肿瘤类型中过表达,主要在 78% 的三阴性乳腺癌 (TNBC)、64% 的腺癌亚型非小细胞肺癌 (NSCLC) 和 75% 的鳞状细胞癌 (SCC) 亚型中 4,14)。图 1 说明了 TROP2 在各种肿瘤类型中的表达。Stepan 等人。描述了TROP2 mRNA和蛋白质在正常人体组织中的表达水平,发现在宫颈、食道和皮肤的复层鳞状上皮以及乳腺、肾脏、胰腺、胆管和前列腺的立方和柱状上皮中有表达,但在脑、骨髓、结肠、心脏、肠、肌肉、神经、卵巢、垂体、脾脏、睾丸或甲状腺中未观察到表达(15)。
产品的窗口,如多项研究所示。2 - 12中的ADCELD,现场特定类型的所有类型的技术,如今已统治了进入临床试验的新ADC。然而,比较产生相同代谢物的同质和杂质ADC的免疫原的最新工作表明,特定部位的技术可能并不总是会增强该药物的小脂肪动物,并且也可能有害地改变其毒性。13 - 15实际上,几个标准,例如有效载荷的性质,链接器,结合化学,药物抗体比(DAR),ADC的疏水性可能会影响结合物的体内特性,这是在很快被预测的。即将进行的现场特定准备的ADC的大量临床研究可能有助于阐明是否存在单一的共轭化学物质会广泛使用,或者其他方法是否也适用。 因此,开发各种技术是为了进一步进步而有意义的。 由于大量暴露于溶剂的亲核氨基酸,尤其是赖氨酸,与抗体结合的位点可能具有挑战性。 尽管很困难,但通过开发多种技术,可以将其总结为工程性半胱氨酸,disul de 。即将进行的现场特定准备的ADC的大量临床研究可能有助于阐明是否存在单一的共轭化学物质会广泛使用,或者其他方法是否也适用。因此,开发各种技术是为了进一步进步而有意义的。与抗体结合的位点可能具有挑战性。尽管很困难,但通过开发多种技术,可以将其总结为工程性半胱氨酸,disul de