亨廷顿的疾病是一种常染色体,主要遗传的神经退行性疾病,原因是亨廷顿基因外显子1中CAG重复的扩展引起的。在区域萎缩之前的神经元变性和功能障碍会导致影响大脑大规模网络功能的纹状体和皮质回路受损。然而,这些疾病驱动的大规模连通性改变的演变仍然鲜为人知。在这里,我们使用静止状态fMRI来研究洪廷顿疾病的小鼠模型中几个相关脑网络中的功能连通性变化,以及它们在遵循疾病样表型进展的不同年龄如何受到影响。为此,我们使用了ZQ175DN Huntington的疾病小鼠模型的杂合(HET)形式,该模型概括了人类疾病病理的各个方面。基于种子和区域的分析在不同年龄的不同年龄,在3,6-,10个和12个月大的HET和年龄匹配的野生型小鼠上进行。我们的结果表明,在6个月大时期,连通性降低,最突出的区域(如肾后和扣带皮层)与默认模式的网络以及听觉和视觉皮层有关,这是关联皮层网络的一部分。在12个月时,我们观察到与体感皮质等区域中的连接性降低,与侧面皮质网络有关,而尾状壳(Caudate Pitamen)是皮层下网络的组成部分。此外,我们评估了huntington独特的ZQ175DN HET小鼠疾病样病理学对不同大脑区域和网络之间年龄依赖性连通性的影响,在那里我们证明了连通性强度遵循非线性的,倒置的U型模式,这是一种众所周知的U-SAPE模式,这是一种众所周知的发展现象。相反,神经病理学驱动的连接性改变,尤其是在默认模式和关联皮层网络中,功能连接性的年龄依赖性演变下降。这些发现表明,在亨廷顿疾病模型中,连通性的改变始于纹状体连通性变化之前的皮质网络畸变,仅出现在后来的年龄。在一起,这些结果表明,在啮齿动物中看到的年龄依赖性皮质网络功能障碍可能代表亨廷顿疾病进展中的相关病理过程。
注射引起的地震性已成为广泛部署增强的地热系统(例如)最关键的挑战之一。尤其是,一些EGS开发项目导致大型,破坏性的地震出乎意料地发生在刺激的储层区域,尤其是在停止液体注入后。然而,这些地震性模式的病因机制仍然高度难以捉摸。在这里,我们确定了可以通过对天然裂缝花岗岩储层的液压刺激进行完全耦合的液态力学模拟来解释EGS部位延迟地震性的组合。该模型包括一个稀疏的网络,该网络与附近的,非常面向的断层相互作用,该网络与长而变化的裂缝相互作用。结果表明,裂缝的存在在流场和岩石变形中引入了显着的非线性,并显着扩大了受液体注入影响的岩石体积。首先,受刺激的断裂网络提供了高度可渗透的吊带,用于在长时间的情况下传达较高的孔隙压力。第二,裂缝的各向异性膨胀会产生剪切应力,几乎在整个储层上迅速传播。孔隙压力和压力扰动不仅会导致沿裂缝滑动,在注射过程中诱导(微)地震性,而且会影响附近断层的稳定性,这可能不一定会在注射过程中加压。转移的毛弹性应力可以增加或减少沿不同断层段的滑动趋势。然而,当注射后几个月后,当临时断层渗透率演化调节的渐进孔压扩散后,断层才能重新激活。我们还发现,地震性的时空演化在很大程度上取决于附近的断层方向,水力力学特性以及与断裂网络的液压连接以及应力的初始状态。我们得出的结论是,在注射过程中和注射后的准确地下表征和连续监测应允许管理注射诱导的地震性带来的风险,并安全地解锁了清洁和可持续的地热能的巨大潜力。
退役计划 KCE 电池存储场地描述 KCE 电池存储设施占地约 4 英亩,位于康涅狄格州威灵顿镇。标的物业位于住宅区 (R - 80),位于威灵顿河以东的乡村住宅区内。该物业的东部目前用于农业,而物业的西部(包括拟议的项目区域)为林地。项目所在地的物业地势较高,且大致平坦。项目区域西部的地形向西倾斜,雨水径流向西流动。5 MW/20 MWh 电池储能系统将由安装在电池架中并以串联和并联连接的锂离子电池组成。电池将安置在混凝土板上建造的电池容器内,包括两个 Sungrow SC3150 -MV- US 逆变器和十二个 Sungrow ST2752UX - US、2.752MWh 电池容器。电池将通过地下管道连接到逆变器。现状:拟建项目场地树木繁茂,未被使用。一条现有的林间小路穿过该物业和邻近物业,通向项目一般位置。这条路将得到改善,并用于进入拟建项目。退役和恢复计划项目退役和恢复计划(计划)如下所述。与残值或转售价值相关的信用预计将超过拆除成本。土地所有者已准备好该计划,概述了在项目使用寿命结束时退役的方法和手段。该计划的目的是确定用于减轻储存设施停止运营可能造成的影响的方法。退役和恢复活动将遵守 CSC 和任何有效退役协议的适用要求。该项目的预期经济和技术寿命约为三十年。在其寿命结束时,该项目将退役,随后将拆除储存设施、辅助设备、建筑物和基础设施。一般而言,设施退役与设施建设的顺序相反。
摘要:目的:分析世界卫生组织(WHO)功能性I级肺动脉高压(PAH)患者的临床资料及预后。方法:本研究回顾性分析了2021年1月至2022年6月郑州大学第一附属医院心内科确诊并治疗的63例I级PAH患者的临床资料(基线、实验室检查、超声心动图和右心导管检查资料),平均随访时间为10.7±6.5个月,分析患者的治疗及预后。结果:I级PAH患者确诊时平均年龄为39.7±12.7岁,女性占92.1%;44.4%的患者为Ⅲ或Ⅳ级;55.6%为中高危。亚组分析中,特发性肺动脉高压 (IPAH) 组心功能 III/IV 级 ( P =0.03) 及高危病例数高于先天性心脏病相关 (CHD-PAH) 组和结缔组织病相关 PAH (CTD-PAH) 组 ( P=0.04)。CHD-PAH 患者的肺动脉收缩压、平均肺动脉压及肺血管阻力高于 CTD-PAH 患者 ( P <0.01),而 IPAH 患者的右室收缩末期容积和舒张末期容积低于 CTD-PAH 患者 ( P <0.05)。3 个亚组间超声心动图指标 (右房大小、右室大小和肺动脉收缩压) 及相关实验室指标 (血常规、肝肾功能) 差异均无统计学意义。 PAH的靶向药物治疗方面,双药联合治疗比例最高(48.1%),其次是单药治疗(35%)和三联治疗(15.9%)。近半数(48.7%)CTD-PAH病例首诊于风湿免疫科,均接受PAH的靶向药物治疗。经过平均10.7±6.5个月的随访,共发生8起终点事件,其中3例因CTD-PAH合并其他脏器严重并发症而死亡。所有纳入的PAH患者1年生存率为95.2%。结论:在靶向治疗时代,我国I类PAH患者早期生存率高,联合治疗比例高,多学科关注度强。
•公司决策是否,何时以及如何成为战略决策?贸易涉及什么以及有关rm范围,规模和地理范围的选择的后果?关于决定的战略意义的基于这些决策的战略意义的基础,大约有什么意外的ves和经济范围?•经理如何追求公司战略决策?公司管理决策与组织的形式和结构之间的相互作用是什么?哪些决策工具和方法指导经理?在公司规模和范围中,企业管理团队的性质和作曲如何?•是否,何时以及如何合并,收购,联盟和潜水琀碗保留其战略价值,以实现资源saloca琀碗在内部和整个rms上的gura琀碗?其他哪些方法可以添加,subs琀碗tute或补充这些公司发展模式?•当代的上下文趋势如何在公司战略决策的前提,过程和后果?三个趋势是值得注意的。在行业4.0 ERA中,诸如Automa in and,Ar琀碗昀碗智力,连接和分布式制造等技术的出现和不同技术如何?对ESG OBJEC的越来越重视和目的如何影响公司战略的选择?如何组织和管理多元化的企业,并考虑劳动力的结构和偏好的变化?所有应用程序都应考虑拟议的研究如何促进此thema thema c ques琀碗。提交了各种theore的cal perspec ves ves,以解决特定问题研究问题cons to cons cons to cons ots ots ons,提供对战略管理理论的贡献,并且很明显。
州长劳动力和人工智能工作组的成立 2 工作组成员 3 公开会议和意见征集机会 4 工作组目标 5 人工智能和威斯康星州劳动力市场概述 5 背景 5 人工智能和劳动力 7 人工智能对威斯康星州主要行业、技能和职业的预计影响 9 工作组进展和流程 13 政策提案摘要 14 教育 教育原则 14 教育政策提案 15 政府 政府政策提案 16 劳动力发展 劳动力发展政策提案 17 经济发展 经济发展政策概念 18 附录 A:教育 19 威斯康星州各大学 拟议政策名称:投资人工智能研究 19 拟议政策名称:课程开发和教学改进,以改善教学和学习19 拟议政策名称:EAB 导航 – 为学生成功提供建议 20 拟议政策名称:人工智能领域的教师招聘和保留 20 威斯康星技术学院系统 拟议政策名称:威斯康星技术学院系统人工智能计划 21 附录 B:政府 23 拟议政策名称:宽带扩展和可访问性 23 拟议政策名称:激励实施人工智能解决方案和基础设施以提高效率、效率和劳动力机会 24 拟议政策名称:数据和隐私办公室 25 拟议政策名称:跨机构技术治理工作组 26 附录 C:劳动力发展 27 拟议政策名称:增强学徒制基础设施以考虑包括人工智能在内的贸易和工业技术进步 27 拟议政策名称:工人联系以增加获得为因人工智能而失业或受到其他影响的员工提供培训 27 拟议政策名称:威斯康星州快速推进人工智能扩展基金,用于雇主主导的员工培训;劳动力保留;社区技术中心培训以及 K-12 技术和培训 29 拟议政策名称:人工智能裁员规避计划 31 拟议政策名称:人工智能劳动力人才管道 32 拟议政策名称:人工智能数字素养运动 33 拟议政策名称:增强全州数据基础设施以回答与人工智能和劳动力相关的问题 34 附录 D:经济发展 35 拟议政策名称:为威斯康星州企业提供人工智能支持 35 拟议政策名称:人工智能创新中心 36 拟议政策名称:威斯康星州企业人工智能路线图 36 注释 37
EQUIS 和维多利亚州 SEC 完成融资并开始建设全球最大的电池项目之一 Equis Development Pte Ltd(Equis)和维多利亚州政府所有的 SEC 完成融资并开始建设墨尔本可再生能源中心(MREH 第一期)第一期。MREH 第一期已扩展为三个独立的 200MW 项目,总容量为 600MW/1600MWh,涉及投资超过 10 亿美元。加上 SEC 的 2.45 亿美元股权投资,Equis 将其在 MREH 第一期的股权投资扩大到 5.1 亿美元以上。“事实证明,SEC 是一位商业和有价值的合作伙伴,为 MREH 增加了直接价值,并确保了快速、经济高效的建设计划。该项目将成为全球最大的电池储能项目之一。 “到 2025 年底,它将开始增强维多利亚州的电网和电价稳定性,”Equis 创始人兼董事总经理 David Russell 表示。MREH 第一阶段有三个电池阶段,两个电池阶段各包含 400MWh 的 2 小时存储容量,Equis 将拥有 70% 的股份,SEC 将拥有 30% 的股份;一个电池阶段包含 800MWh 的 4 小时存储容量,Equis 将拥有 51% 的股份,SEC 将拥有 49% 的股份。200MW/800MWh 电池的 100% 容量将受 SEC 的承包协议约束,从而使 SEC 能够直接确保 SEC 太阳能和风能项目的稳定。 “ MREH 第一期项目独特的规模和结构使其能够快速响应 SEC 的容量需求,并能够直接确定自己的可再生能源发电负荷,同时还能确保 400MW 的商业容量,能够快速应对影响电价和州内电力稳定供应的预期和意外事件。” David Russell 指出。MREH 第一期项目与特斯拉签订了合同,特斯拉将提供 444 个完全集成的特斯拉 Megapack 电池储能系统 (BESS),与 AusNet 和 Lumea 签订合同,提供连接输电基础设施,并与三星 C&T 和 Genus Plus Group 成立合资企业,负责该项目平衡电厂的工程、采购和施工。“该项目将由值得信赖、信誉良好的交易对手交付,这些交易对手在澳大利亚有按时、按预算完成项目的良好记录,” David Russell 指出。 MREH 第一阶段的共同所有权将使维多利亚州居民从关键可再生能源基础设施的运营中获得经济利益,同时确保该项目支持就业和本地内容。“这项投资是提高维多利亚州可再生能源存储容量的一大进步——这对于实现我们国家到 2035 年实现 95% 可再生能源发电的领先目标至关重要,”州电力委员会部长 Lily D'Ambrosio 表示。
图0-1,从alpha到达的围栏........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... 70-2, Packing Label Location..............................................................................................................................................7 Fig.1-1, PN-4 FT Enclosure.....................................................................................................................................................8 Fig.1-2, PN-4 FTB Enclosure...................................................................................................................................................8 Fig.2-1,PN-4 ft或PN-4 FTB外壳的单个宽混凝土垫..................................................................................................................................................................................................................................................................................................................................................................................................................... 102-2, Single-Wide Pad for PN-4 FT or PN-4 FTB Enclosures............................................................................................ 11 Fig.2-3, Double-Wide Pad for PN-4 FT and PN-4 FTB Enclosures........................................................................................12 Fig.2-4, Suggested Grounding..............................................................................................................................................14 Fig.3-1,PN-4 ft机柜安装在准备好的垫子上...........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................3-2, FBX-60A on PN-4 FT Enclosure...............................................................................................................................17 Fig.3-3, BBX 70A (BBX-F12).................................................................................................................................................17 Fig.3-4, BBX 100A (BBX-F18)................................................................................................................................................17 Fig.3-5, MTS (Showing 100A and 60A boxes)......................................................................................................................17 Fig.3-6, BBX-100A-8P0S Service Disconnect.......................................................................................................................18 Fig.3-7, BBX-70A Service Disconnect...................................................................................................................................19 Fig.3-8, Schematic: Primary Service BBX-100A-8P0S with IPP-240-3..................................................................................20 Fig.3-9,示意图:带有IPP-1220-3的初级服务BBX-100A-8P0 ..3-10,示意图:带有IPP-120-2的二级服务BBX-100A-8P0 ..3-11,示意图:带有IPP-240-2的二级服务BBX-100A-8P0 ..3-12, Schematic: Secondary Service BBX-70A with IPP-120-1.......................................................................................22 Fig.3-13, Schematic: Primary Service BBX-70A with IPP-240-1...........................................................................................22 Fig.3-14, Connector Fitting in Rear of Equipment Tray..........................................................................................................23 Fig.3-15, Location of SPI in Equipment Tray..........................................................................................................................23 Fig.3-16, SPI Ground Wire Connected to Enclosure Ground Bar..........................................................................................23 Fig.3-17, Conduit Location.....................................................................................................................................................24 Fig.3-18, Coaxial Connectors................................................................................................................................................24 Fig.3-19, AlphaCell ® 210 FTX Battery Date Code..................................................................................................................25 Fig.3-20, In-Line Fuse Link Mounting...................................................................................................................................25 Fig.3-21, In-Line Fuse Cable.................................................................................................................................................25 Fig.3-22, BIU Tamper Switch Location..................................................................................................................................26 Fig.3-23, Conduit Pass Through............................................................................................................................................26 Fig.3-24,路由导管地下示例....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... 27 3-25, Removing Battery Hardware..................................................................................................................................28 Fig. 3-26, Installing Battery Cables and Intercell Fuses.........................................................................................................28 Fig. 3-27, Trimming Battery Cover on PowerSafe ® SBS190F Batteries...................................................................................28 Fig. 3-28, XM3.1-HP Power Supply Smart Display.................................................................................................................29 Fig. 3-29, PN-4 FT XRT-TPPL Power System Wiring Diagram................................................................................................30 Fig. 3-30, PN-4 FTB XRT-TPPL Power System Wiring Diagram.............................................................................................31 Fig. 3-31, BIU Extension Connections to XM3.1-HP Power Supply.......................................................................................32 Fig. 5-1, Security Screw Dimensions....................................................................................................................................34 Fig.3-24,路由导管地下示例....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... 273-25, Removing Battery Hardware..................................................................................................................................28 Fig.3-26, Installing Battery Cables and Intercell Fuses.........................................................................................................28 Fig.3-27, Trimming Battery Cover on PowerSafe ® SBS190F Batteries...................................................................................28 Fig.3-28, XM3.1-HP Power Supply Smart Display.................................................................................................................29 Fig.3-29, PN-4 FT XRT-TPPL Power System Wiring Diagram................................................................................................30 Fig.3-30, PN-4 FTB XRT-TPPL Power System Wiring Diagram.............................................................................................31 Fig.3-31, BIU Extension Connections to XM3.1-HP Power Supply.......................................................................................32 Fig.5-1, Security Screw Dimensions....................................................................................................................................34 Fig.5-2, Template Placement on Enclosure...........................................................................................................................34 Fig.5-3, Installing Brackets....................................................................................................................................................35 Fig.5-4, Installing Security Bar..............................................................................................................................................35 Fig.5-5, Battery Interface Unit Front.....................................................................................................................................36 Fig.5-6, BIU Mounting Ear (Horizontal Position)...................................................................................................................36 Fig.5-7, BIU Mounting Ear (Vertical Position).........................................................................................................................36 Fig.5-8, BIU Mounting Ear (Alternate Position).....................................................................................................................36 Fig.5-9, BIU Mounting Locations..........................................................................................................................................37 Fig.5-10, IPP for One Power Supply......................................................................................................................................37 Fig.5-11,一个电源(不是工厂预接)的Breaker Duplex选项(BDO)........................................................................................................................................................................................................................................................................................................................................................................................................................... 37FIG。5-12, LA-P+ Installed in BDO..........................................................................................................................................38 Fig.5-13, Location of LED on LA-P+.....................................................................................................................................38
为了帮助您彻底了解 D M D 像素结构及其处理方法,我们使用了几个图,包括爆炸视图、剖面视图和电气示意图。图 6 以爆炸视图的形式显示了图 4 中的像素结构,说明了各个层之间的关系,包括用于寻址像素的底层静态随机存取存储器 (SRAM) 单元。图 7 显示了 3 x 3 像素阵列的渐进剖面视图。图 8 描述了各层如何电气连接,并定义了必须施加到像素以实现正确开关动作的偏置和地址电压。D M D 像素是一个在 CMOS SR A M 单元上制造的单片集成 M E MS 上层结构单元。等离子体作为牺牲层,在上层结构的金属层之间形成空气间隙。空气间隙使结构可以自由旋转,绕两个柔性扭转铰链转动。镜子连接到下层轭架,轭架通过两个扭转铰链悬挂在支撑柱上。轭是静电的,被吸引到下面的轭地址选择的电极上。镜子是
雅典这座标志性城市历史悠久、文化底蕴深厚、创新意识强,是激发创造力、促进合作和建立持久联系的理想场所。雅典是民主、西方文明、奥运会、戏剧和主要数学原理的发源地,拥有丰富的文化遗产和知识遗产,不断激励和吸引着世界。正如英国诗人约翰·弥尔顿所说,雅典是“希腊之眼,艺术和雄辩之母”。这一遗产可以追溯到历史上,自古以来,希腊一直是科学研究和技术创新的中心。毕达哥拉斯、阿基米德、柏拉图和亚里士多德等思想巨匠共同塑造了西方思想的基础。哲学家、科学家、数学家、医士甚至牧师汇聚一堂,将他们的见解结合起来,形成了一个统一的知识体系。从希波克拉底强调观察、诊断和伦理,到盖伦开创性的解剖学研究,不同领域的知识汇聚为医学和科学的重要发展铺平了道路。我们很高兴能在一个对科学、医学和技术的贡献如此多方面和持久的地方举办今年的研讨会。我们很高兴看到今年提交的四页论文和一页摘要的多样性和跨学科性,创下了历史新高,来自全球 49 个国家。我们编制了一个全面的技术计划,其中包括世界一流的口头和海报会议、主题演讲和全体会议、特别会议、教程、挑战、展览和演示、行业会议和创业演讲,为期四天的会议体验将通过我们的特别社交活动得到丰富。ISBI 2024 将涵盖与医学图像计算相关的所有领域,同时将重点扩展到生物医学成像领域的新兴人工智能 (AI) 前沿。今年的激动人心的计划包括 241 个口头报告和 717 个海报报告,主题涵盖前沿研究、创新工程解决方案和现实世界的临床应用。选定的 ISBI 2024 论文的扩展版本将被邀请提交给顶级期刊的特刊,包括 IEEE 医学成像学报:医学成像基础模型进展特刊;计算与结构生物技术杂志:智能医院 - 临床环境中医学成像 AI 的采用和信任特刊;医学图像分析杂志:组织病理学/生物成像特刊。其他特刊将刊登在计算机视觉与图像理解 (CVIU) 和生物医学成像机器学习 (MELBA) 杂志上。四位世界知名的 AI、生物医学成像和机器学习专家将发表四场发人深省的全体会议演讲。Anant Madabhushi 将以关于医疗保健领域人工智能的演讲开启全体会议,讨论其回顾性和前瞻性验证;Joseph Sifakis 博士将讨论人工智能的现状和未来发展轨迹,强调人工智能引起的风险、评估和监管;Katherine Ferrara 博士将分享她在个性化成像和治疗诊断方面的专业知识;Francis Bach 博士将介绍关于去噪扩散模型的另一种观点。第一天的活动以小组讨论结束,小组讨论深入探讨将人工智能研究转化为临床实践的复杂过程,特别是在生物医学成像领域。我们尊敬的跨学科小组成员(N. Paragios、C. Daskalakis、A. Kelekis、M. Mallet、G. Spigelman、L. Zöllei)将探讨关键主题,从解决数据管理和算法开发中的挑战到确保技术转让和扩大规模以及临床部署的资金,从而成功将 AI 技术整合到医疗保健中。今年,我们对会议形式进行了重大改变,从传统的并行临床日形式转变为两个临床焦点会议,这两个会议位于技术计划的核心,没有任何其他会议同时进行。这一选择符合我们对更广泛的互动、全面报道和观众参与的承诺。第一场会议将重点讨论肿瘤学综合精准诊断中的成像和 AI 机会。 MacLean Nasrallah 博士、Vassilis Gorgoulis 博士和 Jacob Visser 博士将就肿瘤学中临床和生物学相关问题的选择提供观点,这些问题的解决方案可通过成像和人工智能来解决,目标是通过整合来自多个生物标志物的数据来改善诊断和预后。第二场会议将讨论人工智能在神经退行性疾病(如阿尔茨海默病和神经精神疾病)中的应用。利用这些例子,Magdalini Kosta-Tsolaki 博士、Ilya Nasrallah 博士和 Paris Lalousis 博士将强调将基于成像的人工智能转化为精准诊断的挑战和机遇。六个特别会议专门为医疗需求而定制,旨在介绍开创性的工程解决方案:生物医学图像的简单复杂数据;使用 3D 电子显微镜对细胞内的分子进行成像;超越常规的 MRI:开创性的进展特别是在生物医学成像领域。我们尊贵的跨学科小组成员(N. Paragios、C. Daskalakis、A. Kelekis、M. Mallet、G. Spigelman、L. Zöllei)将探讨关键主题,从解决数据管理和算法开发中的挑战到确保技术转让和扩大规模以及临床部署的资金,从而成功将 AI 技术整合到医疗保健中。今年,我们对会议形式进行了重大改变,从传统的并行临床日形式转变为两个临床焦点会议,这两个会议位于技术计划的核心,没有任何其他会议同时进行。这一选择符合我们对更广泛互动、全面报道和观众参与的承诺。第一场会议将重点讨论肿瘤学综合精准诊断中的成像和 AI 机会。 MacLean Nasrallah 博士、Vassilis Gorgoulis 博士和 Jacob Visser 博士将就肿瘤学中临床和生物学相关问题的选择提供观点,这些问题的解决方案可通过成像和人工智能来解决,目标是通过整合来自多个生物标志物的数据来改善诊断和预后。第二场会议将讨论人工智能在神经退行性疾病(如阿尔茨海默病和神经精神疾病)中的应用。利用这些例子,Magdalini Kosta-Tsolaki 博士、Ilya Nasrallah 博士和 Paris Lalousis 博士将强调将基于成像的人工智能转化为精准诊断的挑战和机遇。六个特别会议专门为医疗需求而定制,旨在介绍开创性的工程解决方案:生物医学图像的简单复杂数据;使用 3D 电子显微镜对细胞内的分子进行成像;超越常规的 MRI:开创性的进展特别是在生物医学成像领域。我们尊贵的跨学科小组成员(N. Paragios、C. Daskalakis、A. Kelekis、M. Mallet、G. Spigelman、L. Zöllei)将探讨关键主题,从解决数据管理和算法开发中的挑战到确保技术转让和扩大规模以及临床部署的资金,从而成功将 AI 技术整合到医疗保健中。今年,我们对会议形式进行了重大改变,从传统的并行临床日形式转变为两个临床焦点会议,这两个会议位于技术计划的核心,没有任何其他会议同时进行。这一选择符合我们对更广泛互动、全面报道和观众参与的承诺。第一场会议将重点讨论肿瘤学综合精准诊断中的成像和 AI 机会。 MacLean Nasrallah 博士、Vassilis Gorgoulis 博士和 Jacob Visser 博士将就肿瘤学中临床和生物学相关问题的选择提供观点,这些问题的解决方案可通过成像和人工智能来解决,目标是通过整合来自多个生物标志物的数据来改善诊断和预后。第二场会议将讨论人工智能在神经退行性疾病(如阿尔茨海默病和神经精神疾病)中的应用。利用这些例子,Magdalini Kosta-Tsolaki 博士、Ilya Nasrallah 博士和 Paris Lalousis 博士将强调将基于成像的人工智能转化为精准诊断的挑战和机遇。六个特别会议专门为医疗需求而定制,旨在介绍开创性的工程解决方案:生物医学图像的简单复杂数据;使用 3D 电子显微镜对细胞内的分子进行成像;超越常规的 MRI:开创性的进展第二场会议将讨论人工智能在神经退行性疾病(如阿尔茨海默病和神经精神疾病)中的应用。利用这些例子,Magdalini Kosta-Tsolaki 博士、Ilya Nasrallah 博士和 Paris Lalousis 博士将强调基于成像的人工智能在精准诊断中的应用所面临的挑战和机遇。会议还特别安排了六场会议,旨在展示满足医疗需求的开创性工程解决方案:生物医学图像的简单复杂数据;使用 3D 电子显微镜对细胞内的分子进行成像;超越常规的 MRI:开创性的进展第二场会议将讨论人工智能在神经退行性疾病(如阿尔茨海默病和神经精神疾病)中的应用。利用这些例子,Magdalini Kosta-Tsolaki 博士、Ilya Nasrallah 博士和 Paris Lalousis 博士将强调基于成像的人工智能在精准诊断中的应用所面临的挑战和机遇。会议还特别安排了六场会议,旨在展示满足医疗需求的开创性工程解决方案:生物医学图像的简单复杂数据;使用 3D 电子显微镜对细胞内的分子进行成像;超越常规的 MRI:开创性的进展