FEMA 的合规流程包括几个连续步骤和多个阶段,LUMA 全力参与其中,同时满足既定的时间表以实现联邦资助的项目目标。该流程包括但不限于与各个利益相关者的沟通、在需要时请求和获得批准以及不断审查项目参数和目标。从高层次来看,初始步骤涉及准备初始工作范围(“ISOW”),其中包含功能规范和预测成本估算。然后,该 ISOW 经过广泛的审查和批准流程。一旦 ISOW 获得内部批准,就会提交给 PREB 进行审查和批准,以符合 NEPR-MI-2021-0002 档案中的 2021 年 3 月 26 日决议和命令(“3 月 26 日命令”)部分,并与波多黎各电力管理局(“PREPA”)综合资源计划(“IRP”)和修改后的行动计划保持一致。如果 LUMA 获得 PREB 对项目的批准,则 LUMA 将与 COR3 和 FEMA 一起启动该项目,以启动审批流程。FEMA 评估 ISOW,如果获得批准,则分配 FEMA 加速奖励策略(“FAASt”)编号。
背景:静息态功能性磁共振成像 fMRI (rs- fMRI) 已广泛用于研究精神疾病的大脑功能,从而深入了解大脑组织。然而,rs-fMRI 数据的高维性给数据分析带来了重大挑战。变分自动编码器 (VAE) 是一种神经网络,在提取静息态功能连接 (rsFC) 模式的低维潜在表示方面发挥了重要作用,从而解决了 rs-fMRI 数据的复杂非线性结构。尽管取得了这些进展,但解释这些潜在表示仍然是一个挑战。本文旨在通过开发可解释的 VAE 模型并使用 rs-fMRI 数据在自闭症谱系障碍 (ASD) 中测试其效用来解决这一差距。
1. 执行摘要。俄亥俄州坎顿市作为著名的工业中心有着悠久的历史,与钢铁和制造业息息相关。与其他拥有工业遗产的地区一样,这座城市面临着诸多挑战,包括后工业时代的投资撤资、系统性种族主义以及城市更新的错误尝试所带来的后果,这些挑战导致了高贫困率、低劳动参与率和低人均收入,种族和地理差距很大。斯塔克经济发展委员会 (SEDB) 提出了“重新连接坎顿”计划,该计划以现有资产为基础,创建了一套相互支持的、基于地点的干预措施,旨在促进包容性增长。这些项目将在东南坎顿 (SE Canton) 的七个相邻人口普查区内进行,黄金年龄就业差距 (PAEG) 为 10.1%,人均收入为 22,000 美元。1
摘要AI的发展为传播者(即,对话代理人),已经为AI在人们的社会世界中的位置以及人类和机器之间的感知过程,尤其是自闭症患者,尤其是可能从这种互动中受益的人。当前的研究旨在在1-4周内探索六个自闭症和六个非自闭症成年人与对话虚拟人(CVH/对话剂/聊天机器人)的相互作用。使用半结构化访谈,对话性聊天案和研究后的在线问题,我们介绍了与人类chatbot互动,聊天机器人人性化/DEHU MANIVIANGE和CHATBOT的自闭症/非独立性特征有关的发现。发现表明,尽管自闭症用户愿意与聊天机器人交谈,但没有迹象表明与聊天机器人建立关系。我们的分析还强调了自闭症用户对聊天机器人的同理心的期望。对于非自动用户的情况,他们试图通过不断测试AI对话/认知技能来扩展对话代理的能力。此外,非自动用户对Kuki的基本对话技能感到满意,而在Con Trary,自闭症参与者中,他们期望更多的深度对话,因为他们更信任Kuki。这些发现提供了针对自闭症用户的新型人与chatbot互动模型的见解,以通过陪伴和社交联系来支持他们。
大脑功能依赖于脉冲神经元回路,其中突触在融合传输与记忆存储和处理方面发挥着关键作用。电子技术在模拟神经元和突触方面取得了重要进展,而将大脑和受大脑启发的设备连接起来的脑机接口概念也开始实现。我们报告了大脑和硅脉冲神经元之间的忆阻连接,这些连接模拟了真实突触的传输和可塑性。与金属薄膜氧化钛微电极配对的忆阻器将硅神经元连接到大鼠海马的神经元。忆阻可塑性解释了连接强度的调节,而传输则由通过薄膜氧化物的加权刺激介导,从而产生类似于兴奋性突触后电位的反应。反向大脑到硅的连接是通过微电极-忆阻器对建立的。在此基础上,我们展示了一个三神经元脑硅网络,其中忆阻突触经历由神经元放电率驱动的长期增强或抑制。
抽象辐射能量是一个问题,随着数据速率的增加而变得复杂。此外,EMI问题经常在系统验证过程后期出现,靠近系统产品运输截止日期。这些EMI问题的解决方案非常昂贵且难以实施。因此,通过在产品设计阶段的模拟和分析来捕获潜在的EMI问题,而不是在产品开发结束时的EMC调节测量过程中捕获潜在的EMI问题。此外,EMI的仿真技术通常很复杂且耗时,也不适合宽带分析。本文介绍了一种使用3D场求解器工具来分析各种频率的辐射能量的方法。运行一个3D字段求解器模型,并在一系列频率上生成S-参数。初始溶解点用于生成辐射能量的定量结果。然后,只有初始求解是在各种频率下重新运行的,这是基于S参数结果的有趣点选择的。初始求解迅速完成,因此可以使用多个点来生成辐射能量在一系列频率中产生。然后,该方法用于分析来自一些连接器结构的EMI性能,并将其与实验室测量值进行比较。然后将各种特征比较有关它们对EMI的影响的各种特征。作者(S)传记Michael Rowlands是Molex信号完整性和连接器设计组的电气工程师。他专门从事多gigahertz频率的信号完整性。他在1998年获得了麻省理工学士的电气工程学士学位和硕士学位。毕业后,他在波士顿Teradyne担任信号完整性工程师四年。他为高达6 GHz的测试设备设计了电缆组件,电路板和互连。2002年,他在伊利诺伊州的一家初创公司工作。该公司以12.5 Gbps设计的色散薪酬微芯片用于光纤通信。他设计了电路板,以演示和验证12.5Gbps的性能,并根据系统建模进行算法改进。他在ECTC,DesignCon,IMAPS,IPC-APEX和PCB East上撰写或合着并介绍了技术论文。在2005年,作为Endicott Interconnect Technologies年的研发的一部分,他设计和分析了电路板,芯片软件包和自定义计算系统。自2009年以来,他从事Molex设计的下一代25-40Gbps I/O和板上连接器。Alpesh U. Bhobe获得了博士学位。 2003年科罗拉多大学科罗拉多大学科罗拉多大学的电气工程专业。 他是2003年至2005年在科罗拉多州博尔德市的NIST的一名后者。 在科罗拉多大学和NIST的研究期间,他的研究兴趣包括开发用于EM和微波应用程序的FDTD和FEM代码。 目前,他正在加利福尼亚州圣何塞的EMC Design Cisco Systems担任经理。Alpesh U. Bhobe获得了博士学位。 2003年科罗拉多大学科罗拉多大学科罗拉多大学的电气工程专业。他是2003年至2005年在科罗拉多州博尔德市的NIST的一名后者。在科罗拉多大学和NIST的研究期间,他的研究兴趣包括开发用于EM和微波应用程序的FDTD和FEM代码。目前,他正在加利福尼亚州圣何塞的EMC Design Cisco Systems担任经理。
1国家研究委员会 - 生物经济研究所(Lamma,C/O CNR -IBE)的监测和环境模型实验室联盟,佛罗伦萨研究研究所,意大利Sesto Fiorentino,国家研究委员会,2个国家科学委员会(CNR -ISMAR),国家研究委员会(CNR -ISMAR),国家研究所(CNR -ISMAR)。 (CNR-Ismar) Secondary headquarters of Lerici, Forte Santa Teresa, Lerici, SP, Italy, 4 Institut Français de Recherche pour the Exploitation de la Mer (iFremer), Unite ´ Ressources Marines EN Polyne ´ SIE (PDG-Rbe-Rmpf), Center oce ´ anchoque du peace, tarach.波利尼西亚,米兰,意大利米兰市5个,尼古拉斯环境学院6海洋地理空间生态实验室,杜克大学,杜克大学,北卡罗来纳州达勒姆大学,7个物理,地球与环境科学系,锡耶纳大学,锡耶纳大学,锡耶纳大学,意大利,意大利,8个国家生物多样性未来中心(NBFC)
/#! “#$%”#&%$'!'“%! div>%“”“!” #!%“” $“#$$” $!* $ +!“#,!“ $ *”%“” *“%” $$#