。cc-by-nc 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权所有,该版本于2024年7月13日发布。 https://doi.org/10.1101/2022.04.12.4888101 doi:Biorxiv Preprint
。cc-by-nc-nd 4.0国际许可证未通过同行评审获得证明)是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是此预印本的版权持有人(该版本发布于2024年7月8日。; https://doi.org/10.1101/2024.07.07.08.602496 doi:biorxiv Preprint
本文在贝叶斯范式中重新表述了赵等人(2021b)的协变量辅助主(CAP)回归。该方法确定了多变量响应数据协方差中与协变量相关的成分。具体而言,该方法估计一组多元响应信号的线性投影,其方差与外部协变量相关。在神经科学中,人们对分析来自大脑不同区域的脑信号时间序列之间的统计依赖性很感兴趣,我们将其称为功能连接(FC)(Lindquist 2008;Fornito 和 Bullmore 2012;Fornito 等人 2013;Monti 等人 2014;Fox 和 Dunson 2015)。功能连接背后的大脑信号是多变量的,在分析功能连接时,每个大脑活动都被视为与其他大脑活动的相对关系(Varoquaux 等人,2010),因为这种统计依赖性与行为特征(协变量)相关。本文开发了一种贝叶斯方法对反应信号进行监督降维,以分析外部协变量与以多变量信号的协方差为特征的功能连接之间的关联。通常,分析大脑功能连接的第一个步骤是定义一组对应于感兴趣的空间区域(ROI)的节点,其中每个节点都与其自己的图像数据时间过程相关联。然后,根据每个节点时间过程之间的统计依赖性(van der Heuvel 和 Hulshoff Pol,2010;Friston,2011),估计网络连接(或节点之间的“边缘”结构)。 FC 网络是使用 Pearson 相关系数( Hutchison 等人,2013 年)以及部分
加速铜线关闭的政策应要求及时在光纤覆盖区域退役并限制对旧铜线设备的升级,从而促进 VHCN 的采用。近年来,欧洲光纤网络的扩张进展顺利。然而,由于规划和建设能力有限,以及各成员国的技术选择不同,到 2030 年完全关闭铜线网络是不现实的。任何强制性的关闭期限都不适合当前从铜线到光纤的过渡。关闭铜线网络的决定权应由网络所有者掌握。政策制定者不应设定具有约束力的期限,而应支持将光纤铺设作为关闭铜线的先决条件。
缩写:ACC,前扣带皮层;ACE2,血管紧张素转换酶2;ALFF,振幅低频波动;BBB,血脑屏障;BCT,脑连接工具箱;CC,胼胝体;CMB,脑微出血;COMMIT2,微结构信息纤维束成像2的凸优化模型;CSD,约束球面反卷积;DT,扩散张量;DW-MRI,扩散加权MRI;FA,分数各向异性;FBA,基于固定单元的分析;FC,纤维横截面;FD,纤维密度;FDC,纤维密度和横截面;FOD,纤维方向分布;FOV,视野;GM,灰质;ICU,重症监护病房;MD,平均扩散率; N Acc,伏隔核;NBS,基于网络的统计数据;OFC,眶额皮质;RT-PCR,实时逆转录聚合酶链反应;SyN,对称标准化;UF,钩束;WM,白质。* 通讯作者:意大利马里奥内格里 IRCCS 农业研究所生物医学工程系,Villa Camozzi via GB Camozzi, 3, 24020 Ranica (BG)。电子邮件地址:alberto.arrigoni@marionegri.it (A. Arrigoni)、sara.bosticardo@univr.it (S. Bosticardo)、gpezzetti@asst-pg23.it (G. Pezzetti)、sofia.poloni@ marionegri.it (S. Poloni)、serena.capelli@marionegri.it (S. Capelli)、 anapolitano@asst-pg23.it (A. Napolitano), andrea.remuzzi@unibg.it (A. Remuzzi), rzangari@ fontazionefrom.it (R. Zangari), llorini@asst-pg23.it (FL Lorini), msessa@asst-pg23.it (M. Sessa), alessandro.daducci@univr.it (A. 达杜奇),anna.caroli@marionegri.it (A. Caroli),sgerevini@asst-pg23.it(S. Gerevini)。
应对生态系统的栖息地丧失和分裂的影响,需要在景观内采取其他有效的基于区域的保护措施来构成保护区,以促进生物多样性和多个生态系统服务(ES)。但是,批判性知识差距仍然存在于应恢复自然要素的位置和如何恢复以提高景观与同时支持的连接,并减少生物多样性与ES之间的权衡。在允许系统地探索空间模式效果的虚拟景观实验中,我们生成了旨在促进生态连通性的替代景观恢复场景。场景在组成现有自然区域的恢复区域的位置和大小上有所不同。我们分析了这些方案对四个捆绑包的影响,这些捆绑包代表目标ES和生物多样性相关值的不同优先级。所有捆绑包都通过增加景观中的恢复面积而受到青睐,但通过不同的规范配置促进。促进自然栖息地高度聚集的恢复场景促进了生物多样性和与文化价值相关的束,而较小的自然元素分散在整个景观中更有益于可持续生产和气候适应捆绑包。这些对比度在低恢复工作中最为明显,在景观配置对生物多样性和生态系统过程的影响最大。在优先考虑恢复或保护的领域时,景观内的恢复计划的有效空间规划应考虑这些权衡。我们的发现有助于更全面地理解如何在景观中集成到景观中,以共同支持生物多样性和人员的连通性。
研究文章:新研究|成年小鼠寄生虫杏仁核的开发神经元亚型和连通性https://doi.org/10.1523/eneuro.0119-24.2024收到:2024年3月20日,2024年3月20日接受:2024年5月3日接受:10524年5月10日,2024年5月10日,2024年Copyright Copyright©2024 SAXON SAXON saxon等。这是根据Creative Commons Attribution 4.0国际许可条款分发的开放访问文章,只要将原始工作正确归因于任何媒介,它允许在任何媒介中进行无限制的使用,分发和复制。
在人类运动中,不同身体部位的协同运动可确保向前运动,同时在不断变化的环境条件下保持姿势平衡。尽管经常被认为是高度自动化的运动,但人的步行仍需要将多个大脑和脊柱过程的精细整合,并融合证据,表明脑皮质的主要作用。特别是,分布式皮质区域的动态相互作用对于整合额叶,感觉运动和视觉运动信息可能至关重要,1,2将适应脊柱中央模式发生器的刻板印象活动以满足环境需求3,4。可以通过同步神经元振荡来实现这种显着的运动控制,这是一种协调功能专业神经网络中信息流的平均值(供回顾4-6)。这些细微调整的动力学的改变会妨碍运动的控制并导致步态障碍。这些细微调整的动力学的改变会妨碍运动的控制并导致步态障碍。
Abram, SV, Wisner, KM, Fox, JM, Barch, DM, Wang, L., Csernansky, JG, MacDonald, AW, & Smith, MJ (2017)。额颞叶连接可预测精神分裂症患者的认知共情缺陷和体验性负面症状。人脑映射,38 (3),1111 – 1124。https://doi.org/10.1002/hbm.23439 Abubacker, NF, Azman, A., Doraisamy, S., Azmi Murad, MA, Elmanna, MEM, & Saravanan, R. (2014)。乳腺医学图像语义注释中关联规则挖掘的基于相关性的特征选择。计算机科学讲义,482 – 493。https://doi.org/10.1007/978-3-319-12844-3_41 Adhikari, BM、Hong, LE、Sampath, H.、Chiappelli, J.、Jahanshad, N.、Thompson, PM、Rowland, LM、Calhoun, VD、Du, X.、Chen, S. 和 Kochunov, P. (2019)。精神分裂症中的功能性网络连接障碍和核心认知缺陷。 Human Brain Mapping,40 (16), 4593 – 4605。https://doi.org/10.1002/hbm.24723 Baker, JT, Holmes, AJ, Masters, GA, Yeo, BTT, Krienen, F., Buckner, RL, & Öngür, DJ (2014)。精神分裂症和精神病性躁郁症患者的皮质关联网络破坏。JAMA Psy-chiatry,71 (2), 109 – 118。https://doi.org/10.1001/jamapsychiatry。 2013.3469 Beaty, RE, Kenett, YN, Christensen, AP, Rosenberg, MD, Benedek, M., Chen, Q., Fink, A., Qiu, J., Kwapil, TR, Kane, MJ, & Silvia, PJ (2018). 通过大脑功能连接对个人创造力进行稳健预测。美国国家科学院院刊,115 (5), 1087 – 1092。https://doi.org/10.1073/pnas.1713532115 Berman, RA, Gotts, SJ, McAdams, HM, Greenstein, D., Lalonde, F., Clasen, L., Watsky, RE, Shora, L., Ordonez, AE, Raznahan, A., Martin, A., Gogtay, N., & Rapoport, J. (2016). 感觉运动和社会认知网络中断是儿童期发病的精神分裂症症状的基础。 Brain , 139 (1), 276 – 291。https://doi.org/10.1093/brain/ awv306 Binder, JR、Desai, RH、Graves, WW 和 Conant, LL (2009)。语义系统在哪里?对 120 项功能神经影像学研究的评论与荟萃分析。大脑皮层 , 19 (12), 2767 – 2796。https://doi.org/10.1093/cercor/bhp055 Bonnici, HM、Kumaran, D.、Chadwick, MJ、Weiskopf, N.、Hassabis, D. 和 Maguire, EA (2012)。解码内侧颞叶中的场景表征。海马, 22 (5), 1143 – 1153。https://doi. org/10.1002/hipo.20960 Brady, R.、Tandon, N.、Keshavan, M. 和 Ongur, D. (2017)。精神分裂症的阴性症状和额顶叶回路功能障碍。生物精神病学, 81 (10), S111。https://doi.org/10.1016/j.biopsych.2017. 02.285 Briggs, RG、Chakraborty, AR、Anderson, CD、Abraham, CJ、Palejwala, AH、Conner, AK、Pelargos, PE、O'Donoghue, DL、Glenn, CA 和 Sughrue, ME (2019)。下额回的解剖学和白质连接。临床解剖学,32 (4), 546 – 556。https://doi.org/10.1002/ca.23349 Cai, M., Ji, Y., Zhao, Q., Xue, H., Sun, Z., Wang, H., Zhang, Y., Chen, Y., Zhao, Y., Zhang, Y., Lei, M., Wang, C., Zhuo, C., Liu, N., Liu, H., & Liu, F. (2024)。精神分裂症中的同源功能连接中断及其相关基因表达。神经影像,289,120551。https://doi.org/10.1016/j.neuroimage。 2024.120551 Chen, J., Müller, VI, Dukart, J., Hoffstaedter, F., Baker, JT, Holmes, AJ, Vatansever, D., Nickl-Jockschat, T., Liu, X., Derntl, B., Kogler, L., Jardri, R., Gruber, O., Aleman, A., Sommer, IE, Eickhoff, SB, & Patil, KR (2021). 任务定义大脑网络的内在连接模式允许个体预测认知症状
