君主蝴蝶的魅力迁徙人群在北美急剧下降。促成威胁可能是其历史悠久的东部和西部夏季繁殖范围的冬季繁殖种群的扩张。最近的研究表明,来自冬季繁殖种群的人容易承受高寄生虫负担,与迁徙对应物相比,适应性较低。在秋季和春季,这些个体与迁徙君主之间的时间和空间重叠意味着同一寄主植物的杂交和使用可能导致寄生虫的转移,尤其是衰弱的Neogregarine ophryocystis elektroscirrha,从而增加了迁移群体中寄生虫的负载。我们旨在预测气候变化如何影响北美冬季繁殖君主的分布。我们使用君主幼虫观测的生态生态位模型用于冬季和当前的气候数据,以预测北美冬季繁殖君主的当前和未来分布。我们的分析预测,分别为东部和西部迁徙种群分别增加了2100次冬季繁殖君主的适合冬季繁殖君主的38%和160%的增加和340公里的偏移。我们的结果支持对疾病从居民君主传播到迁徙君主流行的潜在风险的关注。在东部和西方的迁徙人口中,这是由于居民人口与秋季和春季Mi grations途中迁徙人口旅行的地区的重叠增加所致。我们的结果支持呼吁控制非本地热带乳草的传播,因为冬季繁殖君主依靠该植物进行繁殖。
从 700,000 名生物库参与者的数据中深入了解 DNA 重复扩增的原因和后果 Margaux LA Hujoel 1,2,3,*、Robert E. Handsaker 3,4,5、Nolan Kamitaki 1,2,3,6、Ronen E. Mukamel 1,2,3、Simone Rubinacci 1,2,3、Pier F. Palamara 7,8、Steven A. McCarroll 3,4,5、Po-Ru Loh 1,2,3,* 1 美国马萨诸塞州波士顿布莱根妇女医院和哈佛医学院医学系遗传学分部 2 美国马萨诸塞州波士顿布莱根妇女医院和哈佛医学院数据科学中心 3 美国马萨诸塞州剑桥麻省理工学院和哈佛大学布罗德研究所医学和群体遗传学项目 4 美国马萨诸塞州波士顿麻省理工学院和哈佛大学布罗德研究所斯坦利精神病学研究中心。 5 美国马萨诸塞州波士顿哈佛医学院遗传学系。 6 美国马萨诸塞州波士顿哈佛医学院生物医学信息学系 7 英国牛津大学统计学系 8 英国牛津大学人类遗传学中心* 通讯作者:mhujoel@broadinstitute.org (MLAH),poruloh@broadinstitute.org (P.- RL) 摘要串联 DNA 重复的扩增和收缩是人类群体和人类组织中遗传变异的来源:一些扩增的重复会导致遗传疾病,一些还会造成体细胞不稳定。我们分析了来自英国生物银行和“我们所有人”研究计划中 700,000 多名参与者的血细胞的 DNA 序列数据,并开发了新的计算方法来识别、测量和学习 15 个高度多态性的 CAG 重复位点的 DNA 重复不稳定性。我们发现,即使对于相同长度的等位基因,这 15 个基因座的扩张和收缩率也差异很大;不同基因座的重复序列在生殖系和血液中也表现出差异很大的相对突变倾向。TCF4 重复序列的高度体细胞不稳定性使得全基因组关联分析成为可能,该分析确定了七个基因座,在这些基因座上,遗传变异会调节血细胞中的 TCF4 重复不稳定性。其中三个相关基因座所含基因( MSH3 、 FAN1 和 PMS2 )也会调节亨廷顿氏病的发病年龄以及血液中 HTT 重复的体细胞不稳定性;然而,特定的遗传变异及其效应(不稳定性增加或减少)似乎是组织特异性和重复特异性的,这表明不同组织中的体细胞突变(或同一组织中不同重复的体细胞突变)是独立进行的,并受截然不同的遗传变异的控制。其他修饰基因位点包括 DNA 损伤反应基因 ATAD5 和 GADD45A。分析 DNA 重复扩增并结合临床数据显示,谷氨酰胺酶 (GLS) 基因 5' UTR 中的遗传重复与 5 期慢性肾脏疾病 (OR=14.0 [5.7–34.3]) 和肝脏疾病 (OR=3.0 [1.5–5.9]) 相关。这些结果和其他结果都指出了人类群体和整个人类生命周期中 DNA 重复的动态。
(加拿大心理健康委员会,2023年)个人的睡眠,工作和社交能力(克莱顿,2020年)。在全球范围内,估计每年为抑郁症和焦虑而损失的每年1万亿美元的生产力损失(世界卫生组织,2022年)。尽管这些统计数据主要解决一般焦虑症,但可以表明,生态焦虑是由于逮捕与气候危机相关的威胁而引起的一种焦虑形式,这会导致这些令人震惊的统计数据。尽管对生态焦虑的讨论日益增长,但在理解其在工作场所环境中的含义方面仍然存在显着差距(Joshua等,2022)。有限的研究探索了生态焦虑与工作场所动态之间的联系,突出了一个关键的进一步研究领域(Brooks and Greenberg,2022年)。新兴文献表明,高水平的生态焦虑与负面的情绪和身体反应(例如悲伤,恐惧和愤怒)有关,并可能导致孤立,失眠,压力和抑郁(Clayton,2020年; Gousse-Lissard和Lebrun-Paré,2022年)。相比之下,低或中等水平的生态焦虑可能与正压力或eustress有关,并且可以鼓励个人采用促环境行为(Joshua等,2022; Pikhala,2020; Verplanken等,2020)。在这种情况下,亲环境行为(PEB)可以构成一种生态反焦调节策略的一种形式,该策略的重点是在存在快速和具体的反馈时解决问题(Pikhala,2020; Lebrun-Paré,2018年)。在个人和组织层面上解决生态焦虑至关重要。PEB有助于使组织和/或社会更加可持续性(Lamm等,2013)。在工作场所内,木炭公司将通过节省水,回收利用并减少废物和能源消耗来帮助员工的活动最大程度地减少人们行动的负面影响(Stern,2000)。在员工层面上,价值观和自信心很重要,而在组织层面,环境动态能力,领导力和人力资源管理实践可以发挥重要作用(Unsworth等,2021)。此外,组织的环境影响受到其制度环境的影响(Bryant等,2020),需要组织内部的变革过程(Unsworth等,2021)。为了应对这些挑战,探索列温的变革理论可能是计划和交流组织内部干预措施的宝贵工具(Lewin,1947年)。这种方法允许与工作人员,利益相关者和目标人群进行透明沟通和讨论(Romão等,2023)。
西班牙已开始制定雄心勃勃的目标,即到 2050 年成为碳中和经济体。本文分析了加强气候措施以实现这一目标对预算和经济产生的影响。利用OECD ENV-Linkages可计算一般均衡模型进行的定量情景分析表明,碳中和情景与长期持续的GDP增长相兼容,2023-2050年期间的平均增长率估计为1%左右。结果还表明,采取一揽子强化气候措施会产生预算互动,同时强调,由于政府净收入的增长率仍将保持正值,因此这种转变不会危及政府的预算稳定。
VC Pide的Nadeem ul Haque博士的一项先驱研究强调了问题背后的可能原因。按照他的态度,不足的治理基础设施,包括个人保护不足,不洁的环境和抚养儿童设施,经常引用这种脑部流失的原因。此外,非舒张的工资率以及受过良好教育人士的工作机会缺乏工作机会,这是激励人们从该国移民的其他原因。
丘脑和大脑皮层之间串扰的抽象异常被认为会导致严重的神经精神疾病,例如癫痫和精神病。CACNA1G基因中的致病变异,它编码富含丘脑的T型电压电压通道Cav3.1的α1G亚基与缺乏,智力残疾和精神分裂症有关,但这些遗传性变异是属于这些元素的人,与这些遗传性变异的疾病相关。在这里,我们开发了丘脑皮质途径的体外人组装模型,以系统地剖析T型钙通道中遗传变异的贡献。我们发现,与癫痫发作相关的CACNA1G变体(M1531V)导致人丘脑神经元中T型电流的变化,以及丘脑和皮质神经元在丘脑 - 皮质组件中的丘脑和皮质神经元的相关性。相反,与精神分裂症风险有关的CACNA1G损失导致异常的丘脑皮层连通性,这与自发性丘脑活性增加和异常的丘脑轴突预测有关。总的来说,这些结果说明了器官和组装系统在细胞和电路水平上询问人类遗传疾病风险变异的实用性。
• Our bodies are made up of billions of cells • Each cell contains genetic material in the form of DNA • DNA contains ~22,000 genes • Genes determine traits • Each gene is a set of instructions (code) to make a protein with a specific function • Two copies of each gene • DNA sequence (code) is made up of 4 bases • “Genetics” refers to the DNA code
本文讨论了俄罗斯入侵乌克兰的显着但经常被忽视的环境影响,强调了对土壤,空气,水和生物多样性的不利影响。通过全面的文献学分析,它研究了有关战争的环境影响的现有研究,重点是水,空气,土壤和生物多样性等关键维度。这项研究进一步探讨了各种方法以及旨在减轻这些对环境影响的可持续性解决方案。此外,它讨论了乌克兰在恢复方面面临的直接和长期挑战,强调了需要对环境意识的方法来解决战争问题引起的许多环境问题。最后,本文提出了一个研讨会的发现,其中涉及三所不同的乌克兰大学的15名乌克兰专家,旨在了解环境损害人类健康的广泛含义。这种跨学科的方法对环境退化与公共卫生的交汇处有价值的见解,提出了在后CONFICT环境中恢复和可持续性的运营策略。
静态基因表达程序已在干细胞和成熟人类细胞中得到广泛表征。然而,在细胞分化过程中,RNA 异构体随细胞状态转变而变化的动态、决定因素和功能后果在很大程度上仍不清楚。在这里,我们建立了一个改进的体外人类神经发生模型,该模型适用于全系统的基因表达分析。我们的多组学分析表明,细胞形态的显著改变与 RNA 异构体表达的广泛变化密切相关。我们的方法确定了在不同分化阶段表达的数千种新的 RNA 异构体。RNA 异构体主要来自外显子跳跃和人类神经发生过程中转录起始和多聚腺苷酸化位点的替代使用。转录异构体的变化可以重塑蛋白质异构体的身份和功能。最后,我们的研究确定了一组 RNA 结合蛋白是分化阶段特异性整体异构体变化的潜在决定因素。这项工作支持了神经发生过程中状态转变背后的受调控异构体变化的观点。