评估心肌的形状和运动状态对于诊断心血管疾病至关重要。然而,电影磁共振 (CMR) 成像以 2D 切片为主,其大切片间距对切片间形状重建和运动获取提出了挑战。为了解决这个问题,我们提出了一种将运动和形状分离的 4D 重建方法,该方法可以从有限切片获得的给定稀疏点云序列预测间/内形状和运动估计。我们的框架包括一个神经运动模型和一个舒张末期 (ED) 形状模型。隐式 ED 形状模型可以学习连续边界并鼓励运动模型在没有地面真实变形监督的情况下进行预测,并且运动模型通过将任意点从任意阶段变形到 ED 阶段来实现形状模型的规范输入。此外,构建的 ED 空间可以对形状模型进行预训练,从而指导运动模型并解决数据稀缺问题。我们提出了我们所知的第一个 4D 心肌数据集,并在提出的、公开的和跨模态的数据集上验证了我们的方法,显示出卓越的重建性能并实现了各种临床应用。
气候风险评估必须考虑到广泛的未来,因此科学家经常使用众多全球气候模型进行的模拟来探索区域气候及其影响的潜在变化。一些最新一代模型具有高有效的气候灵敏度(EFFC)。有人认为这些“热”模型是不现实的,因此应将其排除在气候变化影响的分析之外。这是否会改善区域影响评估或使其恶化,尚不清楚。在这里我们表明,在许多重要的气候驱动因素的区域影响驱动因素中,EFFC与预计变化之间没有普遍的关系。分析不同地区的大雨事件,气象干旱和火灾天气,我们发现大多数地区和气候驱动因素的EFFC几乎没有或没有显着相关性。即使发现相关性,与EFFC无关的内部变异性和过程对气候驱动因素的预计变化具有相似的影响。仅基于EFFC的模型选择似乎是不合理的,并且可能忽略了现实的影响,从而低估了气候风险。
从单个视图中恢复3D场景几何形状是计算机视觉中的基本问题。虽然经典的深度估计方法仅推断出2.5D场景表示为图像平面,但最新的基于辐射范围的aperach是重建完整的3D代表。然而,这些方法仍然在被占地的区域困难,因为没有视觉观察的几何形状需要(i)周围的语义知识,以及(ii)关于空间上下文的推理。我们提出了Kyn,这是一种单视场景重建的新方法,其原因是语义和空间上下文来预测每个点的密度。我们引入了一个视觉模块模块,以使用细粒度的语义信息丰富点特征。我们通过语言引导的空间注意机制在整个场景中汇总了点表示,以产生意识到3D语义环境的每点密度预测。我们表明,与预测每个3D点的密度相比,Kyn改善了3D形状的恢复。我们在Kitti-360上实现了最新的场景和对象重建结果,并且与先前的工作相比,零弹性概括的改进。项目页面:https://ruili3.github.io/kyn。
1.1。按下两个按钮中的两个按钮,直到数字数字显示闪烁,然后释放按钮。1.2。单击第一个按钮以选择“ 1A”,“ 2A”,“ 3A”或“ 4A”,这意味着1个地址,2个地址,3个地址或4个地址。1.3。然后按下并按住两个按钮中的任何一个,直到数字数字显示停止闪烁以确认设置为止。例如,当我们将地址设置为22:选择1A时,所有四个频道将是同一地址22。选择2a时,频道1和3将是相同的地址22,频道2和4将是相同的地址23。选择3A时,分别将分别地址为22、23、24,并且第4频道的地址也为24。选择4A时,频道1、2、3、4将分别分别为22、23、24、25。
我们提出了来自单眼RGB视频的动态3D头部重建的单眼神经参数头模型(Mono NPHM)。到此为止,我们提出了一个潜在的空间空间,该空间在神经参数模型的顶部参数化纹理场。我们限制了预测的颜色阀与基础几何形状相关,以便RGB的梯度有效地影响反向渲染过程中的潜在几何代码。为了提高表达空间的代表能力,我们使用超二维增强了向后变形场,从而在拓扑具有挑战性的表达式中显示出颜色和几何表示。使用Mono NPHM作为先验,我们使用基于符号距离字段的体积渲染来处理3D头重建的任务。通过nu毫无反转,我们使用面部锚点构成了具有里程碑意义的损失,这些损失与我们的规范几何表示紧密相关。为了评估单眼RGB视频的动态面部重建任务,我们在休闲条件下记录了20个具有挑战性的Kinect序列。单nphm超过 -
a)MTT-Cleavage:2%TFA/DCM; b)fmoc-aaa(x)-OH耦合; c)FMOC-裂解2%哌啶/2%DBU/DMF,0.1 m HOBT; d)从树脂裂解2.5%TIS/ 2.5%H 2 O/ 95%TFA(RT,3 h); e)盐交换pyr.hcl 10 eq/meoh(1 h); F)环化:BOP 3EQ/HOBT 3EQ/DIPEA 6EQ/DMF(C = 0.5 mg/ml,RT,24 h); g)氨基乙酸脱身0.2 M NH 4 OAC溶液(pH 5.0)/1 M甲氧基胺(RT,1 H); h)在0.2 m NH 4 OAC溶液中(pH 5.0)中的daunorubicin结合(RT,24 h); i)FMOC-裂解4%氢氮/DMF(RT,2 h)。图2:环状kngre(a)和Xngre(b)药物的合成的示意图。
蚊子(Culicidae)代表全球主要的媒介昆虫,它们还居住在世界上许多陆地和水生栖息地。DNA条形码和元法编码现在广泛用于涉及蚊子的研究和常规实践中。但是,这些方法依赖于由代表分类学凭证标本的条形码序列组成的数据库中可用的信息。在这项研究中,我们评估了主要在线数据库中蚊子的公共数据的可用性,专门针对Culicidae:COI及其2的两个最广泛使用的DNA条形码标记。此外,我们对影响物种覆盖范围的可能因素(即在线数据库中覆盖的物种的百分比)对不同国家的COI以及COI的DNA条形码间隙的出现进行检验。我们的发现显示了存储库公开可用的数据差异,Bold + GenBank的COI的分类学或物种覆盖率为28.4–30.11%,而GenBank的ITS覆盖率为12.32%。非洲,澳大利亚和东方的生物地理区域的覆盖范围最低,而近乎度,果皮和大洋洲的覆盖范围最高。新热带区域具有中间覆盖范围。通常,蚊子多样性和较高数量的医学重要物种的覆盖率较低。此外,较高数量的特有物种的国家往往具有更高的覆盖范围。我们希望这项研究可以帮助指导蚊子的区域物种清单,并为所有蚊子物种的DNA条形码提供公开可用的参考文献库。尽管我们的DNA条形码间隙分析表明,需要在数据库中可用的一半蚊子中修改物种边界,但必须收集其他数据以确认这些结果并允许解释DNA条形码间隙的发生。
1美国麻省理工学院和哈佛大学,美国马萨诸塞州剑桥市02142,美国。2美国马萨诸塞州剑桥市艺术与科学学院有机和进化生物学系,美国马萨诸塞州02138,美国。3美国霍华德·休斯医学研究所,美国医学博士20815,美国。4 Harvard-Mit健康科学与技术计划,美国马萨诸塞州剑桥市02139,美国。 5哈佛/麻省理工学院MD-PHD计划,美国马萨诸塞州波士顿,美国02115。 6系统,合成和定量生物学博士学位课程,系统生物学系,哈佛医学院,马萨诸塞州波士顿,美国马萨诸塞州02115。 7英国爱丁堡大学生态与进化研究所。 8 Fathom信息设计,马萨诸塞州波士顿,美国92114,美国9马萨诸塞州公共卫生部,马萨诸塞州波士顿,马萨诸塞州02108,美国。 10免疫学和传染病系,哈佛T.H. Chan公共卫生学院,哈佛大学,波士顿,马萨诸塞州02115,美国。 11马萨诸塞州病原体准备的联盟,哈佛大学,哈佛大学,波士顿,马萨诸塞州,美国02115,美国。 12计算机科学系,工程与应用科学学院,哈佛大学,波士顿,马萨诸塞州02134,美国。 †函数:ispecht@broadinstitute.org,pvarilly@broadinstitute.org。 抽象传播重建 - 对谁感染了疾病暴发中的人的推论 - 对病原体如何扩散和为目标控制措施提供机会的关键见解。 杜松的中心是下一代测序观察到的主机内变体频率的统计模型,我们在超过160,000多个深入序列的SARS-COV-2基因组的数据集上验证了该模型。4 Harvard-Mit健康科学与技术计划,美国马萨诸塞州剑桥市02139,美国。5哈佛/麻省理工学院MD-PHD计划,美国马萨诸塞州波士顿,美国02115。6系统,合成和定量生物学博士学位课程,系统生物学系,哈佛医学院,马萨诸塞州波士顿,美国马萨诸塞州02115。7英国爱丁堡大学生态与进化研究所。8 Fathom信息设计,马萨诸塞州波士顿,美国92114,美国9马萨诸塞州公共卫生部,马萨诸塞州波士顿,马萨诸塞州02108,美国。10免疫学和传染病系,哈佛T.H. Chan公共卫生学院,哈佛大学,波士顿,马萨诸塞州02115,美国。 11马萨诸塞州病原体准备的联盟,哈佛大学,哈佛大学,波士顿,马萨诸塞州,美国02115,美国。 12计算机科学系,工程与应用科学学院,哈佛大学,波士顿,马萨诸塞州02134,美国。 †函数:ispecht@broadinstitute.org,pvarilly@broadinstitute.org。 抽象传播重建 - 对谁感染了疾病暴发中的人的推论 - 对病原体如何扩散和为目标控制措施提供机会的关键见解。 杜松的中心是下一代测序观察到的主机内变体频率的统计模型,我们在超过160,000多个深入序列的SARS-COV-2基因组的数据集上验证了该模型。10免疫学和传染病系,哈佛T.H.Chan公共卫生学院,哈佛大学,波士顿,马萨诸塞州02115,美国。 11马萨诸塞州病原体准备的联盟,哈佛大学,哈佛大学,波士顿,马萨诸塞州,美国02115,美国。 12计算机科学系,工程与应用科学学院,哈佛大学,波士顿,马萨诸塞州02134,美国。 †函数:ispecht@broadinstitute.org,pvarilly@broadinstitute.org。 抽象传播重建 - 对谁感染了疾病暴发中的人的推论 - 对病原体如何扩散和为目标控制措施提供机会的关键见解。 杜松的中心是下一代测序观察到的主机内变体频率的统计模型,我们在超过160,000多个深入序列的SARS-COV-2基因组的数据集上验证了该模型。Chan公共卫生学院,哈佛大学,波士顿,马萨诸塞州02115,美国。11马萨诸塞州病原体准备的联盟,哈佛大学,哈佛大学,波士顿,马萨诸塞州,美国02115,美国。12计算机科学系,工程与应用科学学院,哈佛大学,波士顿,马萨诸塞州02134,美国。 †函数:ispecht@broadinstitute.org,pvarilly@broadinstitute.org。 抽象传播重建 - 对谁感染了疾病暴发中的人的推论 - 对病原体如何扩散和为目标控制措施提供机会的关键见解。 杜松的中心是下一代测序观察到的主机内变体频率的统计模型,我们在超过160,000多个深入序列的SARS-COV-2基因组的数据集上验证了该模型。12计算机科学系,工程与应用科学学院,哈佛大学,波士顿,马萨诸塞州02134,美国。†函数:ispecht@broadinstitute.org,pvarilly@broadinstitute.org。抽象传播重建 - 对谁感染了疾病暴发中的人的推论 - 对病原体如何扩散和为目标控制措施提供机会的关键见解。杜松的中心是下一代测序观察到的主机内变体频率的统计模型,我们在超过160,000多个深入序列的SARS-COV-2基因组的数据集上验证了该模型。我们开发了杜松(系统发育和流行病学重建的关节基础网络推断),这是一种高度估计的病原体爆发重建工具,结合了host内变化,不完全采样和算法平行化。将这种内部内部变化模型与人口水平的进化模型结合在一起,我们开发了一种同时推断系统发育和传播树的方法。我们在计算机生成的爆发和实际爆发中对杜松进行了基准测试,其中传输链接已知或在流行病学上得到证实。我们演示了杜松的
500,000卫星巨型构造低地球轨道(LEO)卫星巨型构造,例如SpaceX的Starlink,有望更快地提供卫星互联网连接的技术。1这项技术使用的卫星比地球上的卫星更靠近地球表面,而对地静止的卫星为GPS或较慢的卫星Internet连接等电力技术。距地球表面的距离较近,也意味着需要更多的设备来提供一致和快速的连接。2一个估计将到2030年推出的额外卫星数量为58,000。3 Starlink提议的巨型构造范围从30,000至40,000颗卫星,随着较旧的卫星的到期,不断补充。4个研究人员在亚马逊项目Kuiper,OneWeb等的多个竞争星座中追踪了500,000多个卫星的国际建议。5美国卫星发射的指数增长许可证是从联邦通信委员会授予的,并免于联邦环境审查。 65美国卫星发射的指数增长许可证是从联邦通信委员会授予的,并免于联邦环境审查。6