通过脑机接口,重建所看到的人脑活动图像连接了人机视觉和计算机视觉。由于个体之间大脑功能存在固有差异,现有文献主要集中于使用每个人各自的脑信号数据为每个人获取单独的模型,而忽略了这些数据之间的共性。在本文中,我们设计了心理测量学,这是一个全方位模型,用于重建从不同受试者获得的功能性磁共振成像 (fMRI) 图像。心理测量学包含一个全方位专家混合 (Omni MoE) 模块,其中所有专家共同努力捕捉受试者间的共性,而与特定受试者参数相关的每个专家则负责处理个体差异。此外,心理测量学还配备了一种检索增强推理策略,称为 Ecphory,旨在通过检索预先存储的特定受试者记忆来增强学习到的 fMRI 表征。这些设计共同使心理测量变得万能而高效,使其能够捕捉受试者之间的共性和个体差异。因此,增强的 fMRI 表征可作为条件信号来指导生成模型重建高质量逼真的图像,从而使心理测量在高级和低级指标方面都成为最先进的技术。
就上述事项,NGT 先生于 2022 年 1 月 12 日通过命令成立了一个由八名成员组成的联合委员会,成员包括环境部和气候变化部、那格浦尔地区办事处、CPCB、浦那地区办事处、MCGM 专员、孟买东郊地区收税员、该地区的 DCP(由孟买警察局长指定)、马哈拉施特拉邦首席野生动物看守人、马哈拉施特拉邦环境主任和州 PCB。负责协调和合规的联络机构是州 PCB 和州湿地管理局。申请中的不满针对的是孟买东郊 Powai 湖的污染以及当局未能采取补救措施。申请人提到污染源是废水和污水的排放、非法填海建设和倾倒垃圾。NGT 先生于 2022 年 1 月 12 日通过的上述命令的副本见附件 I。此后,法庭根据各被告机构的诉状审议了此事,法庭于 2022 年 1 月 12 日下达命令,指出尽管已采取某些举措来恢复/复兴湖泊并防止破坏环境,但迄今为止采取的措施还不够,预期结果尚未实现。还提到,国家当局和民间社会需要继续持续努力,并保持警惕。此外,在必要时,通过所有法定监管机构的协调努力,采取强制措施来执行环境规范。尊敬的 NGT 对上述联合委员会的操作指示简要如下:
行为源自多个在解剖学和功能上不同的大脑区域的协调活动 1,2 。现代实验工具 3–5 使我们能够前所未有地接触大量神经群,甚至是横跨全脑许多相互作用区域的神经群 2 。然而,要理解如此大规模的数据集,不仅需要稳健、可扩展的计算模型来提取区域间通信的有意义特征,还需要原则性理论来解释这些特征。在这里,我们介绍了基于电流的分解 (CURBD),这是一种使用数据约束的循环神经网络模型 6 推断全脑相互作用的方法,该模型一旦经过训练,就会自主产生与实验获得的神经数据一致的动态。CURBD 利用从这些模型推断出的功能相互作用来同时揭示多个大脑区域之间的定向电流。我们首先表明,CURBD 可以在具有已知连接和动态的模拟真实网络中准确地隔离区域间电流。然后,我们将 CURBD 应用于从广泛的神经数据集(斑马鱼幼虫 7 、小鼠 8 、猕猴 9 和人类 10 )获得的多区域神经记录,以证明 CURBD 在解开全脑相互作用和行为背后的区域间通信原理方面的广泛适用性。
1美国麻省理工学院和哈佛大学,美国马萨诸塞州剑桥市02142,美国。2美国马萨诸塞州剑桥市艺术与科学学院有机和进化生物学系,美国马萨诸塞州02138,美国。3美国霍华德·休斯医学研究所,美国医学博士20815,美国。4 Harvard-Mit健康科学与技术计划,美国马萨诸塞州剑桥市02139,美国。 5哈佛/麻省理工学院MD-PHD计划,美国马萨诸塞州波士顿,美国02115。 6系统,合成和定量生物学博士学位课程,系统生物学系,哈佛医学院,马萨诸塞州波士顿,美国马萨诸塞州02115。 7英国爱丁堡大学生态与进化研究所。 8 Fathom信息设计,马萨诸塞州波士顿,美国92114,美国9马萨诸塞州公共卫生部,马萨诸塞州波士顿,马萨诸塞州02108,美国。 10免疫学和传染病系,哈佛T.H. Chan公共卫生学院,哈佛大学,波士顿,马萨诸塞州02115,美国。 11马萨诸塞州病原体准备的联盟,哈佛大学,哈佛大学,波士顿,马萨诸塞州,美国02115,美国。 12计算机科学系,工程与应用科学学院,哈佛大学,波士顿,马萨诸塞州02134,美国。 †函数:ispecht@broadinstitute.org,pvarilly@broadinstitute.org。 抽象传播重建 - 对谁感染了疾病暴发中的人的推论 - 对病原体如何扩散和为目标控制措施提供机会的关键见解。 杜松的中心是下一代测序观察到的主机内变体频率的统计模型,我们在超过160,000多个深入序列的SARS-COV-2基因组的数据集上验证了该模型。4 Harvard-Mit健康科学与技术计划,美国马萨诸塞州剑桥市02139,美国。5哈佛/麻省理工学院MD-PHD计划,美国马萨诸塞州波士顿,美国02115。6系统,合成和定量生物学博士学位课程,系统生物学系,哈佛医学院,马萨诸塞州波士顿,美国马萨诸塞州02115。7英国爱丁堡大学生态与进化研究所。8 Fathom信息设计,马萨诸塞州波士顿,美国92114,美国9马萨诸塞州公共卫生部,马萨诸塞州波士顿,马萨诸塞州02108,美国。10免疫学和传染病系,哈佛T.H. Chan公共卫生学院,哈佛大学,波士顿,马萨诸塞州02115,美国。 11马萨诸塞州病原体准备的联盟,哈佛大学,哈佛大学,波士顿,马萨诸塞州,美国02115,美国。 12计算机科学系,工程与应用科学学院,哈佛大学,波士顿,马萨诸塞州02134,美国。 †函数:ispecht@broadinstitute.org,pvarilly@broadinstitute.org。 抽象传播重建 - 对谁感染了疾病暴发中的人的推论 - 对病原体如何扩散和为目标控制措施提供机会的关键见解。 杜松的中心是下一代测序观察到的主机内变体频率的统计模型,我们在超过160,000多个深入序列的SARS-COV-2基因组的数据集上验证了该模型。10免疫学和传染病系,哈佛T.H.Chan公共卫生学院,哈佛大学,波士顿,马萨诸塞州02115,美国。 11马萨诸塞州病原体准备的联盟,哈佛大学,哈佛大学,波士顿,马萨诸塞州,美国02115,美国。 12计算机科学系,工程与应用科学学院,哈佛大学,波士顿,马萨诸塞州02134,美国。 †函数:ispecht@broadinstitute.org,pvarilly@broadinstitute.org。 抽象传播重建 - 对谁感染了疾病暴发中的人的推论 - 对病原体如何扩散和为目标控制措施提供机会的关键见解。 杜松的中心是下一代测序观察到的主机内变体频率的统计模型,我们在超过160,000多个深入序列的SARS-COV-2基因组的数据集上验证了该模型。Chan公共卫生学院,哈佛大学,波士顿,马萨诸塞州02115,美国。11马萨诸塞州病原体准备的联盟,哈佛大学,哈佛大学,波士顿,马萨诸塞州,美国02115,美国。12计算机科学系,工程与应用科学学院,哈佛大学,波士顿,马萨诸塞州02134,美国。 †函数:ispecht@broadinstitute.org,pvarilly@broadinstitute.org。 抽象传播重建 - 对谁感染了疾病暴发中的人的推论 - 对病原体如何扩散和为目标控制措施提供机会的关键见解。 杜松的中心是下一代测序观察到的主机内变体频率的统计模型,我们在超过160,000多个深入序列的SARS-COV-2基因组的数据集上验证了该模型。12计算机科学系,工程与应用科学学院,哈佛大学,波士顿,马萨诸塞州02134,美国。†函数:ispecht@broadinstitute.org,pvarilly@broadinstitute.org。抽象传播重建 - 对谁感染了疾病暴发中的人的推论 - 对病原体如何扩散和为目标控制措施提供机会的关键见解。杜松的中心是下一代测序观察到的主机内变体频率的统计模型,我们在超过160,000多个深入序列的SARS-COV-2基因组的数据集上验证了该模型。我们开发了杜松(系统发育和流行病学重建的关节基础网络推断),这是一种高度估计的病原体爆发重建工具,结合了host内变化,不完全采样和算法平行化。将这种内部内部变化模型与人口水平的进化模型结合在一起,我们开发了一种同时推断系统发育和传播树的方法。我们在计算机生成的爆发和实际爆发中对杜松进行了基准测试,其中传输链接已知或在流行病学上得到证实。我们演示了杜松的
https://doi.org/10.15159/ar.21.131关于在建筑材料中使用天然纤维的文献计量分析G.M.G.Ferreira 1,D。Cecchin 1,*,A.R.G.de azevedo 2,i.c.r.p.Valadão1,K.A。Costa 3,T.R。Silva 4,F。Ferreira 5,P.I.S。Amaral 6,C.M。huther 1,F.A。Sousa 7,J.O。Castro 8,P.F.P。Ferraz 8和M.A.Teixeira 1 1联邦Fluminense University(UFF),农业工程与环境系,Street Passo daPátria,n。 156,BOA VIAGEM,NITERói-RJ,巴西2北Fluminense州立大学(UENF),土木工程系,Goytacazes Campos,RJ,巴西,3联邦Fluminense University(UFF),生产工程系,工人大道,n。 420,Vila Santa Cecilia,Volta Redonda-RJ,巴西4 North Fluminense State University(UENF),高级材料实验室(LAMAV),AV。alberto lamego,2000,28013-602 Campos dos goytacazes-rj,巴西·弗林宁斯大学(UFF),冶金工程系(VMT) 130-000 Alfenas-MG,巴西7 Semag/Aracruz,AV。Morobá,n。 20,BR 29192-733 BairroMorobá-es,巴西8联邦拉夫拉斯大学(UFLA),大学校园,邮政SCODE 3037 LAVRAS,MG,BRABASIL *通信:Daianececchin@id.uff.uff.uff.uff.br.br.br receaved:Feburoy 2 ND,2021年,2021年;接受:2021年8月3日;出版:2021年8月30日摘要。由于人口对可持续性主题的兴趣越来越大,因此与民用建筑领域的主题相关的出版物有所增长。农业废物已成为一个环境问题,由于自然纤维的特性和改善其产品机械性能的可能性,因此自然纤维在废物的再利用中找到了空间。为了达到可持续的建筑需求,以及重复使用废物的需求,研究开始分析天然纤维在建筑材料中的应用。通过搜索术语“天然纤维”和“建筑材料”术语限制在主要WOS集合中的“天然纤维”和“建筑材料”术语时,通过搜索“天然纤维”和“建筑材料”术语进行的研究提供了。 使用Vosviewer(VOS)软件中的BiblioMetrics分析了与出版物,文件的原产国,文件的原产国,作者使用的关键字以及每个文档的引用数量。 分析的结果表明,多年来与该主题相关的文件的增加,该地区研究最多的国家分别是中国(16),美国(14)和巴西(11)。 对关键词进行分析后提出的结果表明,自然纤维(61个出现),机械性能(44个出现)和复合材料(31例出现)是分析的中出现最高的单词。。使用Vosviewer(VOS)软件中的BiblioMetrics分析了与出版物,文件的原产国,文件的原产国,作者使用的关键字以及每个文档的引用数量。分析的结果表明,多年来与该主题相关的文件的增加,该地区研究最多的国家分别是中国(16),美国(14)和巴西(11)。对关键词进行分析后提出的结果表明,自然纤维(61个出现),机械性能(44个出现)和复合材料(31例出现)是分析的
a)MTT-Cleavage:2%TFA/DCM; b)fmoc-aaa(x)-OH耦合; c)FMOC-裂解2%哌啶/2%DBU/DMF,0.1 m HOBT; d)从树脂裂解2.5%TIS/ 2.5%H 2 O/ 95%TFA(RT,3 h); e)盐交换pyr.hcl 10 eq/meoh(1 h); F)环化:BOP 3EQ/HOBT 3EQ/DIPEA 6EQ/DMF(C = 0.5 mg/ml,RT,24 h); g)氨基乙酸脱身0.2 M NH 4 OAC溶液(pH 5.0)/1 M甲氧基胺(RT,1 H); h)在0.2 m NH 4 OAC溶液中(pH 5.0)中的daunorubicin结合(RT,24 h); i)FMOC-裂解4%氢氮/DMF(RT,2 h)。图2:环状kngre(a)和Xngre(b)药物的合成的示意图。
蚊子(Culicidae)代表全球主要的媒介昆虫,它们还居住在世界上许多陆地和水生栖息地。DNA条形码和元法编码现在广泛用于涉及蚊子的研究和常规实践中。但是,这些方法依赖于由代表分类学凭证标本的条形码序列组成的数据库中可用的信息。在这项研究中,我们评估了主要在线数据库中蚊子的公共数据的可用性,专门针对Culicidae:COI及其2的两个最广泛使用的DNA条形码标记。此外,我们对影响物种覆盖范围的可能因素(即在线数据库中覆盖的物种的百分比)对不同国家的COI以及COI的DNA条形码间隙的出现进行检验。我们的发现显示了存储库公开可用的数据差异,Bold + GenBank的COI的分类学或物种覆盖率为28.4–30.11%,而GenBank的ITS覆盖率为12.32%。非洲,澳大利亚和东方的生物地理区域的覆盖范围最低,而近乎度,果皮和大洋洲的覆盖范围最高。新热带区域具有中间覆盖范围。通常,蚊子多样性和较高数量的医学重要物种的覆盖率较低。此外,较高数量的特有物种的国家往往具有更高的覆盖范围。我们希望这项研究可以帮助指导蚊子的区域物种清单,并为所有蚊子物种的DNA条形码提供公开可用的参考文献库。尽管我们的DNA条形码间隙分析表明,需要在数据库中可用的一半蚊子中修改物种边界,但必须收集其他数据以确认这些结果并允许解释DNA条形码间隙的发生。
评估心肌的形状和运动状态对于诊断心血管疾病至关重要。然而,电影磁共振 (CMR) 成像以 2D 切片为主,其大切片间距对切片间形状重建和运动获取提出了挑战。为了解决这个问题,我们提出了一种将运动和形状分离的 4D 重建方法,该方法可以从有限切片获得的给定稀疏点云序列预测间/内形状和运动估计。我们的框架包括一个神经运动模型和一个舒张末期 (ED) 形状模型。隐式 ED 形状模型可以学习连续边界并鼓励运动模型在没有地面真实变形监督的情况下进行预测,并且运动模型通过将任意点从任意阶段变形到 ED 阶段来实现形状模型的规范输入。此外,构建的 ED 空间可以对形状模型进行预训练,从而指导运动模型并解决数据稀缺问题。我们提出了我们所知的第一个 4D 心肌数据集,并在提出的、公开的和跨模态的数据集上验证了我们的方法,显示出卓越的重建性能并实现了各种临床应用。