DNA测序数据的指数增长需要有效的解决方案,以存储和查询大规模𝑘 -MER集。虽然最近的索引方法使用频谱的弦乐集(SPS),全文索引或哈希,但它们通常会施加结构性约束或需求广泛的参数调整,从而限制了其在不同数据集和数据类型上的可用性。在这里,我们提出了FMSI,这是一种最小的参数,高度空间效率的成员索引和压缩字典,用于任意𝑘 -MER集。fmsi将近似最短的超级弦与蒙面的洞穴 - 轮毂变换(MBWT)结合在一起。与传统方法不同,FMSI在没有预定义的假设上进行操作,而对𝑘 -mer重叠模式则可以利用它们。我们证明,与第二好的竞争对手相比,FMSI比SSHASH,SBWT和CBL等已建立的索引提供了卓越的存储效率,其空间节省最高为2-3倍,具体取决于数据集,𝑘 -MER大小,采样,采样和基因组复杂性,同时支持快速成员和词典成员和义务质量。总体而言,这项工作将基于超弦的索引作为基因组数据的高度通用,灵活且可扩展的方法,并在Pangenomics,宏基因组学和大规模基因组数据库中进行了直接应用。
量子退火是一种有前途的方法,可用于解决资源受限项目调度问题 (RCPSP) 等复杂调度问题。本研究首次应用量子退火来解决 RCPSP,分析了 12 个众所周知的混合整数线性规划 (MILP) 公式,并将量子比特效率最高的公式转换为二次无约束二进制优化 (QUBO) 模型。然后,我们使用 D-wave advantage 6.3 量子退火器解决该模型,并将其性能与经典计算机求解器进行比较。我们的结果表明,该算法具有巨大的潜力,尤其是对于中小型实例。此外,我们引入了目标时间和 Atos Q 分数指标来评估量子退火和逆量子退火的有效性。本文还探讨了高级量子优化技术,例如定制退火计划,以增强我们对量子计算在运筹学中的理解和应用。
我们考虑使用多个移动代理将包裹从指定源集体递送到图中指定目标位置的问题。每个代理从图的某个顶点开始;它可以沿着图的边缘移动,并且可以在移动过程中从一个顶点拾起包裹并将其放在另一个顶点。但是,每个代理的能量预算有限,只能遍历长度为 B 的路径;因此,多个代理需要协作才能将包裹运送到目的地。给定图中代理的位置及其能量预算,寻找可行移动计划的问题称为协作递送问题,之前已经对其进行了研究。先前结果中的一个悬而未决的问题是,当递送必须遵循预先给定的固定路径时会发生什么。虽然这种特殊约束减少了可行解决方案的搜索空间,但我们表明寻找可行计划的问题仍然是 NP 难题(与原始问题一样)。我们考虑该问题的优化版本,即在给定代理的初始位置的情况下,要求每个代理的最佳能量预算 B,从而实现可行的交付计划。与该问题的一般版本已知结果相比,我们证明了该问题的固定路径版本存在更好的近似值(至少对于每个代理单次拾取的限制情况)。我们为有向和有向路径提供了多项式时间近似算法
摘要 — 准确的可再生能源 (RES) 电力预测对于将额外的 RES 容量整合到电力系统中并实现可持续发展目标至关重要。这项工作强调了将分散的时空数据整合到预测模型中的重要性。然而,分散的数据所有权是此类时空模型成功的关键障碍,需要考虑促进数据共享的激励机制。主要贡献是 a) 对预测模型的比较分析,提倡高效且可解释的样条 LASSO 回归模型,以及 b) 数据/分析市场中的竞价机制,以确保公平地补偿数据提供者并使买卖双方都能表达他们的数据价格要求。此外,还提出了一种时间序列预测的激励机制,有效地纳入价格约束并防止冗余特征分配。结果表明,数据卖家的准确性显著提高,并可能获得经济收益。对于风电数据,通过比较该提案生成的预测与本地生成的预测,平均均方根误差改善了 10% 以上。
摘要 - 胸癌构成了重大的全球威胁,强调了迫切需要早期检测以降低死亡率。研究人员正在努力最大程度地减少假阳性和假阴性的发生,从而提高了乳腺癌检测模型的效率。为了实现这一目标,他们采用了先进的技术,例如人工精神,机器学习,深度学习和计算智能。支持向量机(SVM)和K-Nearest邻居(KNN)是两种流行的轻型机器学习技术。;但是,它们的有效性取决于适当的特征选择和参数调整。遗传算法操作通过智能选择相关特征和微调参数提供了解决方案,从而提高了早期诊断的分类精度。这项研究证明了使用遗传算法进行特征选择的混合计算智能模型的有效性。使用威斯康星州乳腺癌诊断数据集,提出的Gaknn-SVM模型在检测乳腺肿瘤方面表现出了卓越的性能。结果表明,基于171个测试样本,其准确性,灵敏度和特异性率分别为98.25%,98.15%和98.41%。总体而言,遗传算法和机器学习方法具有提高乳腺癌检测准确性的巨大希望,最终导致更好的诊断结果和降低的死亡率,尤其是在资源受限的环境中。
温室为作物种植提供了控制的环境,并整合半透明的光伏(STPV)面板提供了产生可再生能源的双重好处,同时促进自然光穿透光合作用。这项研究将整合电池存储系统(BESS)与温室农业中的STPV系统进行可行性分析,考虑到不同农作物的每日光积分(DLI)的要求是主要约束。采用增强的萤火虫算法(FA)来优化PV覆盖率和BES的容量,该分析旨在在25年内最大化净现值(NPV),以作为主要经济参数。通过纳入各种农作物类型的DLI要求,该研究可确保最佳的作物生长,同时最大程度地发电。为了确保现实的长期预测,该分析纳入了25年期间的BESS退化,从而考虑了能源储能的容量损失和效率降低。结果揭示了作物类型的重大影响,具有各种必需的DLI和透明度因子对优化的BES,因此对项目的NPV进行了重大影响。仿真结果表明,对于具有较高DLI需求的农作物,温室中的PVR%可行范围从42%到91%,具体取决于STPV的透射因子。此外,该研究表明,在所有情况下,初始负收入都是普遍的,NPV的最高收入为$ 1,331,340,其农作物的需求较低,而BESS容量为216 kW。
投资风险:投资团队选择的投资组合证券的价值可能会因公司、市场、经济、政治、监管或其他新闻而上涨或下跌,有时甚至高于市场或基准指数。非多元化投资组合可能会将大部分资产投资于少数发行人的证券,而单个发行人的业绩可能会对投资组合的回报产生更大影响。国际投资涉及特殊风险,包括货币波动、流动性较低、会计方法和经济政治制度不同以及交易成本较高。这些风险通常在新兴市场和欠发达市场(包括前沿市场)中更大,包括新的和快速变化的政治和经济结构,这可能导致不稳定;证券市场不发达;以及高通胀、通货紧缩或货币贬值的可能性更高。固定收益证券对发行人和交易对手都承担利率风险和信用风险,投资者可能会损失本金价值。一般来说,当利率上升时,固定收益价值会下降。高收益证券(垃圾债券)具有投机性,价格波动较大,信用和流动性风险程度高于信用评级较高的债券。使用衍生品可能会产生投资杠杆,增加波动的可能性和超过投资金额的损失风险。这些风险以及其他风险在 Artisan Partners 表格 ADV 中有进一步描述,可应要求提供。这是一份营销通讯。
摘要智能城市的发展受到物联网(IoT)技术进步的积极影响。此外,由于新型应用程序的需求,已经出现了新的服务水平,因此必须根据每项服务的技术要求来管理这些新的服务级别,以便有效地将信息从Origin Iot设备路由到基础站。然而,目前的全球能源危机要求技术系统从能耗效率,碳足迹降低和可持续性方面提高意识。从这个意义上讲,我们提出了一个数学优化模型,该模型能够在IoT网络中路由不同的服务,考虑到所提供的服务的优先级不同,同时减少了具有优先级的服务网络的能源消耗。换句话说,该提案旨在延长关键能源城市基础设施中物联网网络的生命周期,以确保网络提供的服务中最高的质量。最后,考虑到不同类型的服务和网络大小,我们的建议在不同的物联网网络方案中进行了评估。关键字:数学优化模型,关键服务,能源消耗,智能城市,物联网网络。
执行摘要在2024年上半年(1H2024),泰国的经济增长仍然相对限制。扩张主要是由旅游业和服务部门驱动的,而制造业和家庭消费继续在恢复中挣扎。尽管有这些条件,该公司还是成功地执行了1H2024的业务计划。销售和服务的总收入达到77.98亿泰铢,反映了去年同期增长14%。审慎的成本和费用管理使该集团的EBITDA报告为17.33亿泰铢,标志着增长17%,超过了收入增长。此外,该公司在2024年上半年获得了2400万泰铢的净利润,这是从上一年的7600万泰铢损失中的显着恢复。尽管季节性压力和关联公司和合资企业造成了季节性压力,主要是由于2023年底在So/ Maldives Hotel开始商业运营。 div>,取得了这些有利的结果。房地产的销售收入总计19.56亿泰铢,包括(1)销售房屋和公寓单位收入的收入为17.46亿泰铢,与去年同期相比增加了49%。这种增长主要是由成功移交新启动的项目(例如S'rin Ratchaphruek- Sai 1和Extro Phyathai Rangnam)驱动的。总销售额,公寓占59%,而水平房屋占41%。(2)工业庄园业务的收入达到了2.09亿泰铢,在2023年底完成土地开发和基础设施后,由土地所有权转移了近五倍,这增加了近五倍。
生成的AI模型和社交媒体的兴起引发了图像编辑技术的广泛兴趣。现实且可控的图像编辑现在对于内容创建,营销和娱乐等应用是必不可少的。在大多数编辑过程中的一个关键步骤是图像合成,无缝地将前景对象与背景图像集成。然而,图像构成的挑战带来了许多挑战,包括结合新的阴影或反射,照明错位,不自然的前景对象边界,并确保对象的姿势,位置和刻度在语义上是连贯的。以前关于图像合成的作品[5,30,32,59,61]专注于特定的子任务,例如图像融合,协调,对象放置或阴影一代。更多的方法[9,36,50,62]表明,可以使用扩散模型同时处理一些单独的组合方面(即,颜色协调,重新定位,对象几何调整和阴影/反射生成)[18,46]。这种方法通常以自我监督的方式进行训练,掩盖地面真相图像中的对象,并将蒙版的图像用作输入[9,62],或者在反向扩散过程中仅在掩模区域内deno [9,50]。因此,在本文中,我们提出了一个生成图像合成模型,该模型超出了掩码,甚至使用空掩码,在这种情况下,模型将自然位置在适合尺度的自然位置中自动合成对象。我们的模型是图像合成的第一个端到端解决方案,同时解决了图像合成的所有子任务,包括对象放置。因此,在推理过程中需要掩模作为输入,导致了几个限制:(i)对普通用户进行精确掩码可能是不乏味的,并且可能会导致不自然的复合图像,具体取决于输入蒙版的位置,规模和形状; (ii)掩模区域限制了生成,其训练数据不考虑对象效应,从而限制了合成适当效果的能力,例如长阴影和反射; (iii)物体附近的背景区域往往与原始背景不一致,因为该模型在面具覆盖的情况下不会看到这些区域。为了实现此目的,我们首先使用图像介绍来创建包括图像三重态的训练数据(前景对象,完整的背景图像和