全面贯彻党的十九大和十九届二中、三中、四中全会精神,落实党中央、国务院关于新一代人工智能发展的决策部署,坚持市场驱动与政府引导相结合,按照“统筹规划、分类施策、市场主导、急用先行、跨界融合、协同推进、自主创新、开放协作”的原则,立足国内需求,放眼国际,建立新一代人工智能国家标准体系,加强标准顶层设计和宏观指导。加快创新技术与应用转化为标准,加强标准实施和监督,推动创新成果与产业深度融合。注重对智能制造、工业互联网、机器人、车联网等相关标准体系的统筹和支撑。深化人工智能标准国际交流合作,注重国际国内标准协同,充分发挥标准对人工智能发展的支撑引领作用,保障高质量发展。
脑肿瘤的特征是脑组织异常生长,因其对全球发病率和死亡率的影响而成为一项重大的医学挑战。脑肿瘤有多种表现形式,从良性到恶性,后者尤其具有侵袭性且易于转移 (1)。脑肿瘤的病因复杂,包括放射线暴露、遗传易感性和家族史等因素,因此需要早期发现和准确诊断 (2)。在脑肿瘤诊断领域,磁共振成像 (MRI) 因其更高的空间分辨率和软组织对比度而成为优于计算机断层扫描 (CT) 的检查方式。这使得 MRI 成为脑肿瘤病例术前评估、治疗管理和生存预测所必需的 (3)。然而,MRI 扫描中传统的手动分割方法虽然是黄金标准,但却存在固有的效率低下和主观差异性,因此有必要探索自动化技术 (4、5)。近年来,深度学习模型(例如 Ma 等人提出的模型)在自动脑肿瘤分割方面取得了重大成功。这些模型擅长捕捉局部和全局上下文特征,但通常会遇到梯度消失和过拟合的问题,尤其是在较深的网络层中。Kumar 等人(7)通过将 ResNet50 与全局平均池化相结合来解决这些问题,以增强各种肿瘤类型的肿瘤分类。在此基础上,我们的研究引入了一种先进的连续学习框架,用于从 MRI 图像中分割脑肿瘤,如图 1 所示。我们的方法与现有技术不同,它集成了多尺度空间蒸馏和伪标记策略。这种方法不仅克服了以前模型中出现的梯度消失和过拟合的局限性,而且还解决了灾难性遗忘问题——这是连续学习模型中常见的挑战。与依赖于保留数据的传统方法不同,我们的研究引入了一种先进的连续学习框架,用于从 MRI 图像中分割脑肿瘤,如图 1 所示。我们的方法与现有技术不同,它集成了多尺度空间蒸馏和伪标记策略。这种方法不仅克服了以前模型中出现的梯度消失和过拟合的局限性,而且还解决了灾难性遗忘问题——这是连续学习模型中常见的挑战。与依赖于保留数据的传统方法不同,我们的研究引入了一种先进的连续学习框架,用于从 MRI 图像中分割脑肿瘤,如图 1 所示。
摘要在此贡献中,我们提供了对连续的梯度(CSG)方法的数值分析,包括来自拓扑优化和收敛速率的应用。与标准随机梯度优化方案相反,CSG不会从以前的迭代中丢弃旧梯度样品。相反,计算了依赖设计的集成权重以形成凸组合,以作为与当前设计下真正梯度的近似值。随着近似误差在迭代过程中消失,CSG代表了一种混合方法,就像纯粹随机方法一样开始,并且在极限中像完整的梯度方案一样行事。在这项工作中,CSG的效率是针对拓扑优化的实际相关应用的。这些设置的特征是大量的优化变量和一个目标函数,其评估需要以非线性方式串联的多个积分的数值计算。以前无法通过任何现有的优化方法解决此类问题。最后,关于收敛速率,提供了第一个估计值并在数值实验的帮助下确认。
摘要在此贡献中,我们介绍了连续随机级别(CSG)方法的完整概述,包括收敛结果,步长规则和算法见解。我们考虑了目标函数需要某种形式集成的优化问题,例如预期值。由于通过固定的正交规则近似近似集成可以将人工局部解决方案引入问题,同时同时提高计算工作,因此在这种情况下,随机优化方案变得越来越流行。但是,已知的随机梯度类型方法通常仅限于预期的风险功能,并且本质上需要许多迭代。后者特别有问题,如果评估成本函数涉及求解多个状态方程,例如,以部分差异方程的形式给出。为了克服这些缺点,最近的一篇文章介绍了CSG方法,该方法通过计算依赖设计的集成权重的旧梯度样本信息重复了旧的梯度样本信息,以获得与完整梯度的更好近似值。在原始的CSG纸张收敛中是为了减小的步长而建立的,但在这里,我们提供了CSG的完整收敛分析,用于恒定步长和Armijo-type线路搜索。此外,提出了获得集成权重的新方法,将CSG的应用范围扩展到涉及较高维积分和分布式数据的问题。
1。使用糖尿病依赖生活质量(ADDQOL)问卷的糖尿病相关的生活质量,12、24和36周2.使用糖尿病(付费5)调查表中的问题区域的糖尿病相关困扰,在12、24和36周时进行了调查表。3。使用患者激活措施(PAM)在筛查,随机化,12、24和36周时测量的患者激活水平4。在随机化,12、24和36周时使用HBA1C测量的血糖控制。葡萄糖变异性,低血糖的发生率和范围指标的时间将在12周期间使用连续的葡萄糖监测设备测量,参与者佩戴了该设备6。临床结果,例如体重,BMI,腰围和总胆固醇,将在随机化12、24和36周时测量
,我们对连续变量量子键分布的渐近秘密密钥率建立了一个分析下限,并通过对相干状态进行任意调制。以前,此类边界仅适用于具有高斯调制的协议,并且在简单的相移 - 键调制的情况下存在数值界限。后者是作为凸优化问题的解决方案获得的,我们的新分析结合匹配Ghorai等人的结果。(2019),最多可达数值精度。由于其大量相干状态,无法使用先前的技术来分析更相关的正交振幅调制(QAM)情况。我们的界限表明,相对较小的星座大小(例如64个状态)基本上足以获得接近真正的高斯调节的性能,因此是大规模部署连续可变量子键分布的有吸引力的解决方案。当调制由任意状态组成,不一定是纯净时,我们也会得出相似的界限。
在NLP中,已知基于单词或子字的文本语言模型表现优于其基于字符的同行。然而,在语音社区中,口语LMS的标准输入为20ms或40毫米的离散单元(比音素短)。从基于文字的LM中汲取灵感,我们基于单词大小连续值的音频嵌入来引入生成性口语模型(GSLM),该模型可以产生多样化和表现力的语言。这是通过用词汇嵌入函数代替词汇类型的查找,通过对比度损失的横熵损失以及k-nn Sampling的多项式采样。最终的模型是基于单词大小连续嵌入的第一个属性语言模型。其性能与自动指标和主观人类判断衡量的发电质量的离散单位GSLM相当。此外,由于其200ms的大型单元,它的内存效率高五倍。此外,词汇嵌入器之前和之后的嵌入在含明确和语义上是可解释的。1
保留所有权利。未经许可就不允许重复使用。永久性。预印本(未经Peer Review的认证)是作者/资助者,他已授予Medrxiv的许可证,以在2025年2月26日发布的此版本中在版权所有者中显示预印本。 https://doi.org/10.1101/2025.02.25.25322890 doi:medrxiv preprint
fi g u r e 1五个占用模型。with:휓占用概率; (a)bp p检测概率; y是在会话s期间在现场I中观察到的检测/未检测; (b)COP휆检测率;会议的持续时间; n是会议s期间网站I的检测数量; (c)pp휆检测率; n i网站I中的检测数量;在网站I中检测到k的时间; (d)2-mmpp和(e)IPP휆1状态1的检测率; 휆2状态2的检测率; 휇12从状态1到状态2的开关率; 휇21从状态2到状态1的开关率; n i网站I中的检测数量;在网站i中检测到k的时间i。
摘要:本论文介绍了独特光子连续自由频率程度的编码。与电磁场的四二晶的数学相似性导致在我们编码中这些变量中表达的方案概括。我们引入了一种新型的鲁棒量子,以在时间频阶段的空间中针对位移类型的误差。研究了双圆柱相的新空间,对于具有翻译对称性的状态的状态是一个特别合适的表示。我们还研究了如何构建功能相分布,从而可以描述具有光谱连续和正交自由度的量子状态。